552 research outputs found

    Refinement of arsenic attributable health risks in rural Pakistan using population specific dietary intake values

    Get PDF
    Background: Previous risk assessment studies have often utilised generic consumption or intake values when evaluating ingestion exposure pathways. If these values do not accurately reflect the country or scenario in question, the resulting risk assessment will not provide a meaningful representation of cancer risks in that particular country/scenario. Objectives: This study sought to determine water and food intake parameters for one region in South Asia, rural Pakistan, and assess the role population specific intake parameters play in cancer risk assessment. Methods: A questionnaire was developed to collect data on sociodemographic features and 24-hour water and food consumption patterns from a rural community. The impact of dietary differences on cancer susceptibility linked to arsenic exposure was evaluated by calculating cancer risks using the data collected in the current study against standard water and food intake levels for the USA, Europe and Asia. A probabilistic cancer risk was performed for each set of intake values of this study. Results: Average daily total water intake based on drinking direct plain water and indirect water from food and beverages was found to be 3.5 L day-1 (95% CI: 3.38, 3.57) exceeding the US Environmental Protection Agency’s default (2.5 L day-1) and World Health Organization’s recommended intake value (2 L day-1). Average daily rice intake (469 g day-1) was found to be lower than in India and Bangladesh whereas wheat intake (402 g day−1) was higher than intake reported for USA, Europe and Asian sub-regions. Consequently, arsenic-associated cumulative cancer risks determined for daily water intake was found to be 17 in children of 3-6 years (95% CI: 0.0014, 0.0017), 14 in children of age 6-16 years (95% CI: 0.001, 0.0011) and 6 in adults of 16-67 years (95% CI: 0.0006, 0.0006) in a population size of 10000. This is higher than the risks estimated using the US Environmental Protection Agency and World Health Organization’s default recommended water intake levels. Rice intake data showed early life cumulative cancer risks of 15 in 10000 for children of 3-6 years (95% CI: 0.0012, 0.0015), 14 in children of 6-16 years (95% CI: 0.0011, 0.0014) and later life risk of 8 in adults (95% CI: 0.0008, 0.0008) in a population of 10000. This is lower than cancer risks in countries with higher rice intake and elevated arsenic levels (Bangladesh and India). Cumulative cancer risk from arsenic exposure showed the relative risk contribution from total water to be51%, from rice to be44% and wheat intake 5%. Conclusions: The study demonstrates the need to use population specific dietary information for risk assessment and risk management studies. Probabilistic risk assessment concluded the importance of dietary intake in estimating cancer risk, along with arsenic concentrations in water or food and age of exposed rural population

    International Frameworks Dealing with Human Risk Assessment of Combined Exposure to Multiple Chemicals

    Get PDF
    The development of harmonised terminology and frameworks for the human risk assessment of combined exposure to multiple chemicals (“chemical mixtures”) is an important area for EFSA and a number of activities have already been undertaken, i.e. in the fields of pesticides and contaminants. The first step prior to a risk assessment of combined exposure to multiple chemicals is problem formulation defining the relevant exposure, hazard and population to be considered. In practice, risk assessment of multiple chemicals is conducted using a tiered approach for exposure assessment, hazard assessment and risk characterisation. Higher tiers require increasing knowledge about the group of chemicals under assessment and the tiers can range from tier 0 (default values, data poor situation) to tier 3 (full probabilistic models). This scientific report reviews the terminology, methodologies and frameworks developed by national and international agencies for the human risk assessment of combined exposure to multiple chemicals and provides recommendations for future activities at EFSA in this area

    Memorandum of Understanding between the Commissioner for Soil and Land Conservation, Environmental Protection Authority, Department of Environmental Protection, Agriculture Western Australia, Department of Conservation and Land Management, Water and Rivers Commission for the protection of remnant vegetation on private land in the agricultural region of Western Australia

    Get PDF
    Memorandum -- Schedule 1. Statutory requirements -- Schedule 2. Area covered by this memorandum -- Schedule 3. Assessment critieria -- Schedule 4. Assessment manuals: Supporting manual 4.2. Deprtment of Environmental Protection. Environmental evaluation of native vegetation in the wheatbelt of Western Australia -- Supporting manual 4.3. Agriculture Western Australia. Procedures for the administration of clearing and protection of native vegetation in Western Australia -- Supporting manual 4.4. Water and Ronmental impact assessment -- Schedule 8. Adjustment measures

    Thresholds of Toxicological Concern for Cosmetics-Related Substances: New Database, Thresholds, and Enrichment of Chemical Space

    Get PDF
    A new dataset of cosmetics-related chemicals for the Threshold of Toxicological Concern (TTC) approach has been compiled, comprising 552 chemicals with 219, 40, and 293 chemicals in Cramer Classes I, II, and III, respectively. Data were integrated and curated to create a database of No-/Lowest-Observed-Adverse-Effect Level (NOAEL/LOAEL) values, from which the final COSMOS TTC dataset was developed. Criteria for study inclusion and NOAEL decisions were defined, and rigorous quality control was performed for study details and assignment of Cramer classes. From the final COSMOS TTC dataset, human exposure thresholds of 42 and 7.9 μg/kg-bw/day were derived for Cramer Classes I and III, respectively. The size of Cramer Class II was insufficient for derivation of a TTC value. The COSMOS TTC dataset was then federated with the dataset of Munro and colleagues, previously published in 1996, after updating the latter using the quality control processes for this project. This federated dataset expands the chemical space and provides more robust thresholds. The 966 substances in the federated database comprise 245, 49 and 672 chemicals in Cramer Classes I, II and III, respectively. The corresponding TTC values of 46, 6.2 and 2.3 μg/kg-bw/day are broadly similar to those of the original Munro dataset

    Valuing air transportation and sustainability from a public perspective: Evidence from the United Kingdom and the United States

    Get PDF
    AbstractOne issue with air transportation and sustainability is that although aviation could be considered economically and socially sustainable, it does generate environmental concerns. The aim of this paper is to examine public attitudes towards air transportation and sustainability, in order to determine how individuals value sustainability in relation to air travel. This empirical paper is based on two large survey data sets, one from the East Midlands region of the United Kingdom and one from the East Coast of the United States. After an initial review of relevant literature and policy, a range of attitudinal statements from the surveys are examined. These statements cover the economic and social benefits of air transportation, the contribution of air travel to climate change, and environmental responses. The analysis demonstrates the high value individuals put on the economic and social sustainability aspects of air transportation. Although many acknowledge aviation's contribution to climate change, few are willing to respond in terms of paying more to offset the negative environmental effects of aviation or to fly less. When analysing the value of sustainability by population sub-group, flight frequency and gender are highlighted as key variables in terms of environmental attitudes

    Accumulation, temporal variation, source apportionment and risk assessment of heavy metals in agricultural soils from the middle reaches of Fenhe River basin, North China

    Get PDF
    The Fenhe River basin is the main agricultural and industrial developed area in Shanxi province, China. In recent years, agricultural non-point source pollution in the Fenhe River basin intensified, threatening soil quality and safety in the area. Accumulation of eight heavy metals (HMs) including chromium (Cr), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd), lead (Pb) and mercury (Hg) has been detected in soil samples from 50 agricultural sites (0-20 cm) from the middle reaches of the Fenhe River basin. The ecological and human health risk and potential sources of the eight HMs were investigated. In addition, the human health and ecological risks imposed by the possible sources of the eight HMs were quantitatively apportioned. The enrichment factor (EF) values of Cr, Ni, Cu, Pb and Zn were lower than 2, indicating minimal enrichment, while values for As, Cd and Hg were between 2 and 5, exhibiting moderate enrichment. Temporal variation analysis suggested that most HMs in the study area exhibited low concentrations after 2015, except As. The potential ecological risk index was 174.09, indicating low ecological risk. The total hazard index and cancer risk values were 0.395 and 5.35 x 10(-4) for adults and 2.75 and 3.63 x 10(-4) for children, indicating the accepted standard levels were exceeded for non-carcinogenic risk for children and carcinogenic risks for both adults and children. Four potential sources were identified: (1) natural sources, (2) farming activities, (3) coal combustion, and (4) exhaust emissions. Natural sources represented the largest contributor to ecological risk, accounting for 57.42% of the total. Coal combustion was the major contributor to human health risks, accounting for 43.27% and 43.73% of the total non-carcinogenic risk and carcinogenic risk for adults, respectively, and 42.72% and 43.88% for children, respectively

    Developmental Neurotoxicity Study of Dietary Bisphenol A in Sprague-Dawley Rats

    Get PDF
    This study was conducted to determine the potential of bisphenol A (BPA) to induce functional and/or morphological effects to the nervous system of F1 offspring from dietary exposure during gestation and lactation according to the Organization for Economic Cooperation and Development and U.S. Environmental Protection Agency guidelines for the study of developmental neurotoxicity. BPA was offered to female Sprague-Dawley Crl:CD (SD) rats (24 per dose group) and their litters at dietary concentrations of 0 (control), 0.15, 1.5, 75, 750, and 2250 ppm daily from gestation day 0 through lactation day 21. F1 offspring were evaluated using the following tests: detailed clinical observations (postnatal days [PNDs] 4, 11, 21, 35, 45, and 60), auditory startle (PNDs 20 and 60), motor activity (PNDs 13, 17, 21, and 61), learning and memory using the Biel water maze (PNDs 22 and 62), and brain and nervous system neuropathology and brain morphometry (PNDs 21 and 72). For F1 offspring, there were no treatment-related neurobehavioral effects, nor was there evidence of neuropathology or effects on brain morphometry. Based on maternal and offspring body weight reductions, the no-observed-adverse-effect level (NOAEL) for systemic toxicity was 75 ppm (5.85 and 13.1 mg/kg/day during gestation and lactation, respectively), with no treatment-related effects at lower doses or nonmonotonic dose responses observed for any parameter. There was no evidence that BPA is a developmental neurotoxicant in rats, and the NOAEL for developmental neurotoxicity was 2250 ppm, the highest dose tested (164 and 410 mg/kg/day during gestation and lactation, respectively)
    corecore