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Abstract 40 
 41 

Background: Previous risk assessment studies have often utilised generic consumption 42 
or intake values when evaluating ingestion exposure pathways. If these values do not 43 
accurately reflect the country or scenario in question, the resulting risk assessment will 44 
not provide a meaningful representation of cancer risks in that particular 45 
country/scenario. 46 
 47 
Objectives: This study sought to determine water and food intake parameters for one 48 
region in South Asia, rural Pakistan, and assess the role population specific intake 49 
parameters play in cancer risk assessment. 50 
 51 
Methods: A questionnaire was developed to collect data on sociodemographic features 52 
and 24-hour water and food consumption patterns from a rural community. The impact of 53 
dietary differences on cancer susceptibility linked to arsenic exposure was evaluated by 54 
calculating cancer risks using the data collected in the current study against standard 55 
water and food intake levels for the USA, Europe and Asia. A probabilistic cancer risk 56 
was performed for each set of intake values of this study. 57 
 58 
Results: Average daily total water intake based on drinking direct plain water and 59 
indirect water from food and beverages was found to be 3.5 L day-1 (95% CI: 3.38, 3.57) 60 
exceeding the US Environmental Protection Agency’s default (2.5 L day-1) and World 61 
Health Organization’s recommended intake value (2 L day-1). Average daily rice intake 62 
(469 g day-1) was found to be lower than in India and Bangladesh whereas wheat intake 63 
(402 g鳥day−1) was higher than intake reported for USA, Europe and Asian sub-regions. 64 
Consequently, arsenic-associated cumulative cancer risks determined for daily water 65 
intake was found to be 17 in children of 3-6 years (95% CI: 0.0014, 0.0017), 14 in 66 
children of age 6-16 years (95% CI: 0.001, 0.0011) and 6 in adults of 16-67 years (95% 67 
CI: 0.0006, 0.0006) in a population size of 10000. This is higher than the risks estimated 68 
using the US Environmental Protection Agency and World Health Organization’s default 69 
recommended water intake levels. Rice intake data showed early life cumulative cancer 70 
risks of 15 in 10000 for children of 3-6 years (95% CI: 0.0012, 0.0015), 14 in children of 71 
6-16 years (95% CI: 0.0011, 0.0014) and later life risk of 8 in adults (95% CI: 0.0008, 72 
0.0008) in a population of 10000. This is lower than cancer risks in countries with higher 73 
rice intake and elevated arsenic levels (Bangladesh and India). Cumulative cancer risk 74 
from arsenic exposure showed the relative risk contribution from total water to be51%, 75 
from rice to be44% and wheat intake 5%. 76 

Conclusions:  The study demonstrates the need to use population specific dietary 77 
information for risk assessment and risk management studies. Probabilistic risk 78 
assessment concluded the importance of dietary intake in estimating cancer risk, along 79 
with arsenic concentrations in water or food and age of exposed rural population. 80 

 81 

Keywords: Water consumption, rice intake, wheat intake, dietary exposure, risk 82 
assessment, cancer risk assessment. 83 
  84 
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1. Introduction 85 
 86 

Diet has been suggested to be the key causal factor for approximately 30% of cancers in 87 

industrialized countries (Doll and Peto, 1996) and about 20% in developing countries 88 

(Willet, 1995).  However, water and food consumption patterns differ across the different 89 

regions of the world and can even vary within a country due to diverse socio-economic 90 

situations, dietary/cultural preferences, ethnicity, climatic conditions, age and sex (WHO, 91 

2011). As such, careful consideration must be made when performing risk assessments 92 

of the intake patterns appropriate to the country/region or population for which cancer 93 

risks are being assessed. 94 

In South Asia, there has been limited research into the association between diet and 95 

carcinogenic potential (Ganguli et al., 2011). Most such studies use data from 96 

epidemiological studies conducted in developed countries where diets and consumption 97 

patterns are usually very different. As an example, water consumption in South Asia 98 

might be considerably higher than the commonly used default water intake value of 2.5 L 99 

day-1 (USEPA 2011) and 2 L day-1 for an adult (WHO 2011; EFSA 2010) leading to an 100 

under estimate of exposure risk from waterborne chemicals such as arsenic. Similarly, 101 

rice consumption in South Asia is generally considerably higher than in many developed 102 

countries (FAO, 1998); but even within South Asia, there will be considerable variation 103 

with large areas of India consuming half the rice per capita of Bangladesh but higher 104 

levels of wheat (National Statistical Organisation India, 2012; Meharg and Zhao, 2012).  105 

Variations in dietary consumption patterns between different subpopulations in the region 106 

were rarely considered. For instance, information on age or gender specific dietary 107 

differences can be used to define subgroups at highest risk (Zahm and Fraumeni, 1995). 108 

Children can have higher exposures to dietary chemicals than adults probably due to 109 

higher ratios of food consumption per kg body weight resulting in higher relative daily 110 

doses (Moy and Vannoort. 2013). A study by the US National Research Council (1993) 111 

found that children were at greater risk from ingestion of pesticide residues whilst a study 112 

by He et al. (2013) reported higher dietary cadmium exposure in men compared to 113 

women due to different consumption patterns of cadmium-containing foods such as 114 

cereals.  115 

At a more local level, diets in urban areas are often very different to rural areas (Miller et 116 

al. 2012): for instance, in Pakistan, there has been an emphasis on metabolic and 117 

cardiovascular health risks from diet in urban areas that are not necessarily transferrable 118 
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to rural areas with different social, cultural, economic and environmental factors affecting 119 

diets (Yakub et al. 2010; Hydrie et al. 2010; Jafar et al. 2009; Iqbal et al. 2004).  120 

Dietary intake data must consider all potential dietary sources. However in the case of 121 

chemical risk assessment, some sources, particularly the contributions of indirect water 122 

intake and food, are often not adequately taken into consideration for consumption and 123 

associated risk assessment. Direct water is defined as tap water consumed directly as 124 

plain drinking water, whereas, indirect water is defined as water added to foods and 125 

beverages (e.g. tea, coffee, bottled water etc.) during final preparation at home or by 126 

food service establishments. Total water refers to combined direct and indirect water 127 

consumption (Bennet et al., 2000). 128 

This study sought to gather food and water intake data from rural villages in Pakistan to 129 

examine the influence of regional rather than generic intake estimates on human health 130 

risk assessments, specifically for cancer risk. It focuses on the need to evaluate all key 131 

ingestion pathways including indirect water consumption, food intake and the role of 132 

socio-demographic factors such as sex, age and occupation on consumption patterns. A 133 

case study is provided based on arsenic exposure through ingestion of arsenic-134 

contaminated water and food.  135 

2. Materials and Methods 136 

2.1   Dietary Intake methodology 137 

Six villages in four districts (Kasur, Sahiwal, Bahawalpur and Rahim Yar Khan) of 138 

Pakistan were identified as study sites as they have at least one groundwater source with 139 

levels of arsenic in excess of 50 たg L-1 (Ahmad et al., 2004) (Figure-1). These sites 140 

consisted of 1776 households, with a population of 15647 (51% men; 49% women) and 141 

an average of 7 family members per house (Pakistan Bureau of Statistics, 2014). A 142 

sample size of 398 individuals from 220 households was recruited to the project, derived 143 

from a formula for estimating sample proportions from large populations (Collet, 2003). A 144 

95% confidence level and standard error of 0.05, as recommended by Collet (2003), 145 

assumes a statistically significant sample size of 384 respondents for a large population. 146 
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 147 
Figure 1: Location map of the study area and sampling points; villages Chak-46/12-L,  148 
Chak-48/12-I and Chak 49/12-l in district Sahiwal; Village Badarpur in district Kasur;  149 

villages Basti Kotla Arab and Basti Balochan RYK and Bahawalpur districts 150 
 151 

The study was conducted in accordance with national and international guidelines for the 152 

protection of human subjects and the research protocol was approved by the National 153 

Bioethics Committee of Pakistan and University of Leeds Research Ethics Committee. 154 

Study participants were recruited during June-September 2014 by a field team fluent in 155 

English and the relevant local languages. Each participant completed a questionnaire with 156 

three sections: demographic features (age, sex, body weight, occupation, number of family 157 

members), 24-hour food intake diary and 24-hour water intake diary, and each household 158 

was supplied with appropriate kitchen utensils (glass: 200-250 ml, cups: 100-200 ml, 159 

plates: 150-400 g, and bowl: 100-300 g) with capacity measured and recorded by the 160 

field teams. The intake diaries used a semi-quantitative Food Frequency Questionnaire 161 

(FFQ) based on the 24 hour recall method (EFSA, 2010). 162 

Water intake was calculated based on direct water sources (plain drinking water only) and 163 

indirect (water consumed in tea, lassi, and staple food such as rice, wheat and pulses) 164 

(Calderon et al., 1999; Ohno et al., 2007; Watanabe et al., 2004). Estimates of water 165 

volume provided by the U.S. Department of Agriculture’s (USDA) National Nutrient 166 

Database were used to calculate indirect water intake (Agricultural Research Service, 167 

2014) and were then combined with direct water intake estimates to make the total water 168 
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intake. Equations 1-10 (Supplementary Information: Table S-1) show how the diary 169 

information was used to determine daily intakes across the sample population.  170 

 171 

2.2 Risk assessment methodology 172 

Water and food intake rates where used to calculate carcinogenic risk of arsenic 173 

exposure using the United States Environmental Protection Agency (USEPA) human 174 

health risk assessment model (Table 1). Risk calculations pertain to the villages and 175 

settings from which the primary water and food intake data were obtained. Mutagenic 176 

chemicals sometimes cause cancer by a mutagenic mode of action (MOA) which 177 

theoretically can lead to a 10 fold greater potency in the first 2 years of life and a 3 fold 178 

greater potency between ages 3 and 16 years of age (USEPA, 2005). This may pose a 179 

higher risk of cancer when exposure occurs during early life. In such cases, age-180 

dependent adjustment factors (ADAFs) are used to assess the additional risk. Applying 181 

ADAFs, three main age groups (i.e. 3–6 years, 6–16 years, and >16 years) were used to 182 

quantify less than life time and life time cumulative cancer risks (USEPA, 2011b).  183 

 184 

Table-1: USEPA equations (USEPA, 2011) for cancer risk calculation  185 
Equation No. Risk Parameters Equation used 

(1) 

Lifetime Average Daily 
Dose (LADD) 
 

    噺   大 淡 瀧琢 抜醍第 淡 醍題台茸 抜代鐸奪   

(2) Cancer Risk (CR)       噺           抜     抜      

Whereas; 186 
 C Arsenic concentration: water (µg L

-1
), rice/wheat (µg g

-1
)
  

(for unit consistency multiplied by 0.001 to get water as (mg L
-1

)  and rice/wheat as (mg kg
-1)  

 
IR Ingestion rate: water (L day

-1
), food (g day

-1
)  

(for units consistency multiplied by 0.001 to get food as (kg day
-1

) 

 
EF Exposure frequency (days year

-1
)  

ED Exposure duration: during life stage (years) 

ATe Average life expectancy (days) =  365 days/year * 67 years  
 

BW Body weight during life stage (kg) 
CSF 1.5 per mg kg

-1
 body weight per day—the cancer slope factor (CSF) for oral ingestion of arsenic 

(ATSDR, 2007) 
ADAF Age dependent adjustment factor (USEPA, 2011b) 

 187 
Two approaches were used to determine cancer risks: point estimates of cancer risks 188 

using intake values from USEPA, World Health Organization (WHO) and regionally 189 

appropriate intake values to assess the importance of dietary consumption patterns 190 

specific to the population in question (Table 2), and a probabilistic approach using the 191 
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intake values from this study population. For this later risk assessment approach, a 192 

Monte Carlo simulation of 10,000 iterations was carried out. In this case, the input 193 

parameters defined as probability distributions are given in Table 2, and output is 194 

likewise presented as a probability distribution (USEPA, 2001). 195 

 196 

Table-2: The input parameters used in calculation of arsenic attributable cancer  197 
 198 
Input variable Unit Study area Fitted distribution values Data source 

Point 
estimates 

Probabilistic 
estimates 

Aswater µg L
-1

 17 districts mean  
 
-- 
 

>10, >50 and >100 for point 
estimate 

World Health 
Organization’s (1993); 
Pakistan Standards 
Quality Control Authority, 
(2010); 
Tahir and Rasheed 
(2014); 
Ahmad et al. (2004) 

-- **Generalized 
Pareto (GP) 
Distribution 
 
k = 0.288 
j =  30.112 
識 = 10 

>10 for probabilistic estimates 

Asraw rice mg kg
-1

 10 districts mean mean 0.082 ± 0.054 Rasheed et al. (2016) 
AsWheat mg kg

-1
 12 districts mean mean 0.012 Al-Othman et al.(2013) 

Water intake (WI) L day
-1

 Study area mean 
 

mean values fitted 
with respect to 
age groups 

*Children 
Age 3-6 years: 1.9 
Age 6-16 Years:2.9 
Adults >16 
Male:3.9 
Female:3.2 
Overall mean 3.6 

Present study 

 Other 95th Percentile NA *Age 3-6 years: 0.33  
*Age 6-16 Years: 0.5  
Adults>:2.5 

USEPA (2011a) 

mean NA *Age 3-6 years: 1 
*Age 6-16 Years:1 
Adults  >16: 2 

WHO (2011) 

Rice intake rate 
(RI) 

g day
-1

 Pakistan mean 
 

mean 
 

*Children 
Age 3-6 years: 91 
Age 6-16 Years:272 
Adults  >16 
Male: 576 
Female: 463 
Overall mean: 532 

Present study 

Bangladesh constant NA Male mean: 1789,  
Female mean: 1522 
Children mean: 862 

Khan et al. (2009) 

India   NA Children: 400    
 Adults: 750  

Roy Chowdhary et al. 
(2002) 

USA constant NA Mean:172.6 USFDA (2016) 
Europe constant NA Mean: 175 EFSA (2014) 

Wheat intake 
(WhI) 

g day
-1

 Pakistan mean 
 
 

mean 
 
 

Children 
Age 3-6 years:  149 
Age 6-16 Years: 227.  
Adults  >16 
Male  426 
Female 358 
Overall mean 400 
 

Present study 

Bangladesh mean NA Male: 179 
Female: 131 

Watanable et al. (2004) 

China mean NA Children:13 
Adults:44 

Zeng et al. (2015) 

Europe mean NA Mean: 182 FAO (2013) 
USA mean NA Mean: 48 (Recommended) U.S. Department of 

Health and Human 
Services and U.S. 
Department of 
Agriculture. 2015–2020 

Body weight 
(BW) 

kg Study area mean NA *Children 
Age 3-6 years: 12 
Age 6-16 years: 26 
Adults  >16 
Male: 68 
Female: 55 
Overall mean 63 

Present study 



8 

 

NA Fourier Fit of Log 
(body weight) with 
respect  to log 
(age)  

Refer to Figure-S-1 
(Supplementary information) 
 

Exposure 
duration (ED) 

years Study area constant Age 3-6 years: 6-
Age (picked by 
Monte Carlo) 
Age 6-16 Years: 
16-Age (picked by 
Monte Carlo) 
Adults >16 Year: 
67- Age (picked 
by Monte Carlo) 

*Children 
Age 3-6 years: 3 years 
Age 6-16 Years: 10 years 
Adults  >16 
Age 16-67 years: 51 years 
Overall ED: 64 years 
 

Present study 

Average Life 
expectancy 

years For all areas constant constant 67 (WHO data for Pakistan) WHO (2015) 

Age years Study area mean -- *Children 
*Age 3-6 years 
*Age 6-16 Years 
Adults   
Age: 16 to >67 years 

Present study 

-- Rician distribution 
 

s (noncentrality parameter) = 
27.4061 
sigma (scale parameter) = 
20.1825 

Averaging Time 
(AT) 

days/years For all 
participants 

constant constant 365 USEPA (2011a) 

Age dependent 
adjustment factor 
(ADAF) 

  constant constant For  0-2 years = 10 
For age 2-16 years =3 
For age 16-67 years = 1 

USEPA (2011b) 

Reference dose 
(RfD) 

mg kg
-1

 day
-1

 For all 
participants 

constant constant 0.0003 USEPA (2011a) 

Cancer slope 
factor (CSF) 

(mg/kg-day)
−m

  For all 
participants 

constant constant 1.5 ATSDR (2007) 

*Results of children are presented in two age groups due to difference in mean body weights.  199 
**k: shape parameter,  j: scale parameter, and し: threshold parameter, 200 
 201 
To calculate lifetime risk (cumulative risk) for a population with an average life 202 

expectancy of 67 years, the risk calculated for each of the age groups was summed after 203 

applying recommended ADAFs. Thus, the life time cancer risk is calculated for a total 204 

period of 64 years, starting at the minimum age of the study participants (3 years old). 205 

This will also help us determine lifetime risks based on exposure beginning very early 206 

compared with those that begin later in life for this region. 207 

Cancer risks for water and most frequently consumed food stuffs i.e. wheat and rice were 208 

used to estimate cumulative as well as relative cancer risk from water and food. The 209 

USEPA acceptable cancer risk (CR) range is 10-4 to 10-6 which is dependent on the size 210 

of the target population (USEPA, 2001). As population size of six villages comprised of 211 

15647 villagers, thus the USEPA's preferred risk goal (1.0 x 10-4) was considered to rule 212 

out even the low risk. 213 

 214 
2.3  Statistical analysis 215 

The results of the household surveys and cancer risks were analysed using Microsoft 216 

Excel and SPSS 17.0 (IBM, New York, NY, USA) for descriptive statistics, two way 217 

analysis of variance (ANOVA), Pearson partial correlation analysis and independent 218 

samples t-test to identify inter-relationships within the parameters. 219 
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3. Results and Discussion 220 

3.1 Estimation of total water intake  221 

The 398 study participants included 249 men and 149 women; 66 participants <16 years 222 

of age (children) and 332 participants ≥16 years (adults);  67 persons < 35 kg body 223 

weight (mean body weight at 16 years of age) and 331 were ≥ 35 kg. (Detailed 224 

demographic features are given in Table-S-2 of Supplementary Information).  225 

The average daily total water intake (direct plus indirect) across this sample population 226 

was determined to be 3.5 ± 1.0 L day-1 for all participants irrespective of age and sex 227 

(Table 3). Adult men (3.9 ± 1.0 L day-1) and adult women (3.2 ± 0.7 L day-1) of age ≥16  228 

years consumed more water than children <16 years (2.8 ± 0.7 L day-1). The overall 229 

average daily total water intake (3.5 L day-1) comprised of 2.7 L day-1 (76% of total) of 230 

direct drinking water and 0.8 L day-1 (24%) of indirect water intake from food and other 231 

beverage sources: this was broadly consistent for males and females although children 232 

consumed less total, direct and indirect water than adult men and women. From an 233 

indirect water intake perspective, lassi and other dairy drinks contributed the most at 234 

around 42% followed by rice (21%), tea (18%), pulses (11%) and wheat chapatti (8%). 235 

(Supplementary information: Tables-S-3 and S-4).  236 
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Table-3: Summary of average daily total, direct and indirect water intake (L person-1 day-1) of the study population 237 
 238 

Sex 
Age groups 
(Years) 

Sample 

Direct Water Intake In-direct Water Intake Total Water Intake 

(L person
-1

 day
-1

) (L person
-1 

day
-1

) (L person
-1 

day
-1

) 

Mean SD 

95% Confidence 
Interval 

Mean SD 

95% Confidence 
Interval 

Mean SD 

95% Confidence 
Interval 

Lower 
bound 

Upper 
bound 

Lower 
bound 

Upper 
bound 

Lower 
bound 

Upper 
bound 

Children 3-6 5 1.6 0.498 0.992 2.228 0.3 0.469 0.255 0.909 1.9 0.943 0.766 3.107 

6-16 61 2.3 0.494 2.219 2.472 0.6 0.391 0.476 0.677 2.9 0.660 2.752 3.090 

Overall  < 16 66 2.3 0.528 2.160 2.419 0.6 0.399 0.459 0.656 2.8 0.725 2.669 3.025 

Male ≥16 206 2.9 0.862 2.794 3.029 1.0 0.464 0.888 1.015 3.9 0.988 3.728 3.998 

Female ≥16 126 2.4 0.541 2.307 2.496 0.8 0.371 0.709 0.838 3.2 0.692 3.054 3.296 

Average intake 
(irrespective of 
sex) 

≥16 332 2.7 0.795 2.632 2.804 0.9 0.439 0.837 0.931 3.6 0.947 3.500 3.704 

Average intake  All 
participants 

398 2.6 0.773 2.571 2.723 0.8 0.449 0.786 0.874 3.5 0.956 3.383 3.571 

SD: Standard deviation, n: No. of samples 239 
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The mean total water intake of this study, 3.5 L day-1, was found to be higher than most 240 

of the regional studies conducted in Canada, USA, Europe, Latin American and Asian 241 

Countries (Supplementary information: Table-S-5) except those reported by Hossain et 242 

al. (2012); Pokkamthanam et al. (2011) and Milton et al. (2006). Water intake differences 243 

might be due to regionally specific features as well as the use of different 244 

methodologies/definitions of intake values (such as using two different studies to 245 

calculate direct and indirect intake separately (Hossain et al. 2012)). Within South Asia, 246 

all of the studies undertaken in Bangladesh have quantified daily total water intake based 247 

on drinking water only (Supplementary information: Table-S-5) whereas, in India, 248 

Pokkamthanam et al. (2011) calculated an average total water intake of 4.5 L day-1 (4.8 ± 249 

2.5 L day-1 for males and 3.3 ± 1.6 L day-1 for females) based on direct and indirect water 250 

intake (beverages and food). 251 

Data that do exist in similar geographical regions, for example South Asia, showed 252 

considerable variation in water intake both within and between populations. A difference 253 

of 1 L day-1 between total water intake of the present study and that of Pokkamthanam et 254 

al. (2011) might be explained by differences in ambient temperature, dietary habits 255 

and/or different cultural practices that exist in India and Pakistan. These reasons may 256 

also explain the differences seen in comparison to dissimilar geographic regions: direct 257 

only intake values of 1.06 L day-1 (Kante and co-workers, 2009) and 1.1 L day-1 (Barraj et 258 

al. 2009) determined for the US population are lower than the present study (2.7 L day-1) 259 

possibly due to different climatic and socio-economic conditions (including job types and 260 

working patterns), and different food and beverage (e.g. carbonated drinks) intake 261 

patterns and preferences.  262 

Drewnowski et al (2013) reported an US average total water intake of 3.5 L day-1 (age 263 

group 20 to ≥71 years), of which 37% was from direct drinking water and the remainder 264 

(63%) deriving from indirect water intake as hot or cold beverages. This is almost the 265 

reverse of the situation reported in this study which puts indirect water intake at 24% of 266 

total consumption, similar to the 36% reported by Hossain et al (2012) in India and the 267 

USA study by Ershow and Cantor (1989) which reported 43% from indirect sources and 268 

57% for direct water. This latter study found broadly the same level of indirect water 269 

consumption as the present study: 0.88 L day-1 (Ershow & Cantor, 1989) compared to 270 

0.8 L day-1 although levels of direct water intake were lower as would be expected due to 271 

different climatic, social etc. factors. The role of climate, in particular temperature, in total 272 

water consumption is borne out by a number of studies in countries with high ambient 273 
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temperatures reporting the highest intake levels e.g. Mexico (4.5 L day-1; Del Razo et al., 274 

2002), India (13.2 L day-1; Pokkamthanam et al., 2011), and Bangladesh (6-10 L day-1; 275 

Watanabe et al., 2004; Khan et al., 2009; and Chowdhury et al., 2000) as well as this 276 

study via the village with the highest ambient temperatures, Chak-48/12-I,which had a 277 

maximum total water intake of 4.5 L day-1 (for a children) and 7.4 L day-1 (for an adult). 278 

3.2 Estimation of food intake pattern 279 

An analysis of dietary choices and consumption frequency of key staples (wheat, rice, 280 

pulses, vegetables and chicken) by the study population over the 24 hour study period 281 

found that wheat chapattis were the most popular staple, consumed by 99% of 282 

participants, followed by pulses and rice at 42-47%; vegetables at 41% and chicken at 283 

26% (Table 4).  284 

 285 
 286 
 287 
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Table-4   Average daily food intake (g day-1 person-1) of children and adults  288 

Sex 
Age Group 

(Years) 

Wheat intake   Rice intake   Pulses intake  Vegetable intake   Chicken intake    Total Food Intake 

Mean ± SD 

95% 
Confidence 

Interval Mean ± SD 

95% 
Confidence 

Interval 
Mean ± 

SD 

95% 
Confidence 

Interval 
Mean ± 

SD 

95% 
Confidence 

Interval 
Mean ± 

SD 

95% 
Confidence 

Interval Mean ± SD 

95% 
Confidence 

Interval 

Lower 
bound 

Upper 
bound 

Lower 
bound 

Upper 
bound 

Lower 
bound 

Upper 
bound 

Lower 
bound 

Upper 
bound 

Lower 
bound 

Upper 
bound 

Lower 
bound 

Upper 
bound 

Children 

3-6 149 ± 81 69 229 91± 7 85 98 75 ± 0 75 75 50 ± 0 50 50 150 ± 71 52 248 292 ± 102 202 382 
6-16 227± 58 212 242 272 ± 97 240 305 154 ± 58 133 176 104 ± 33 93 116 175 ± 45 149 201 526 ± 178 481 571 
Overall < 16 222 ± 62 207 237 253 ± 107 219 287 149 ± 59 127 170 103 ± 34 91 115 171± 47 147 196 508 ± 184 464 553 

Male > 16 426 ± 100 412 439 576 ± 175 538 614 252 ± 67 238 266 187 ± 59 175 200 169 ± 47 157 181 888 ± 269 852 925 
Female > 16 358 ± 101 341 376 463 ± 161 418 507 250 ± 73 232 268 181 ± 65 163 199 157± 50 138 176 773 ± 232 732 813 
Average 
intake 
(irrespective 
of sex) 

> 16 400 ± 105 389 412 532 ± 177 502 563 251± 70 240 262 185 ± 61 175 195 165 ± 48 155 175 844 ± 261 816 873 

Average 
intake  

All participants 372 ± 119 360 384 469 ± 202 439 500 234 ± 78 223 246 170 ± 65 160 180 166 ± 48 157 175 789 ± 279 761 816 

SD: Standard deviation 289 
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Consumption of cooked rice was found to be higher in this study, at 469 g day-1, than 290 

levels reported in USA, Europe, Africa, Middle East, and Latin America, where rice is 291 

not generally considered a staple food, but is broadly consistent with intake levels in 292 

South Asia with levels of 400-1789 g day-1 reported for Bangladesh and 450-1391 g 293 

day-1 in India (Signes et al. 2008; Meharg and Rahman, 2003) (Supplementary 294 

information: Table-S-6).  295 

Average daily wheat intake by adults determined from this study (402 g鳥day−1) was 296 

found to be higher than in studies reported for USA, Europe and Asian sub-regions 297 

(Supplementary information: Table-S-6). However, wheat has been reported to be 298 

the staple food in Pakistan (Prikhodko and Zrilyi, 2013). Previous studies have not 299 

identified rice, wheat, vegetables, animal products and pulses intake values for 300 

Pakistan, either because these have not been considered in the study or the 301 

methodology has precluded inclusion. Thus, risk assessment studies have relied 302 

mostly on dietary consumption data from other geographical regions. For instance, 303 

Rehman and co-workers (2016) have conducted an arsenic risk assessment using 304 

the vegetable intake values reported for Jiangsu Province, China by Jiang et al. 305 

(2015).  306 

3.3 Factors influencing dietary variations 307 

As has already been noted, there is a difference in water consumption between men 308 

and women and between different age ranges. A two-way ANOVA found significant 309 

differences (P<0.001 to ≤ 0.05) between water and/or food intake and mean body 310 

weights (male: 68 kg and female: 56 kg), sex, age and villages. The most significant 311 

relationships were for sex and age, and can be linked to employment patterns 312 

identified by the sociodemographic questionnaire, supporting the association 313 

between labour and dietary intake already identified (WHO, 2007). Water 314 

consumption increased for men with age up to around 60 years (from 2.22 L day-1 to 315 

2.75 L day-1) and then fell (to around 2.52 L day-1) possibly associated with physical 316 

labour in the crop fields: 47% of male participants were involved in agricultural 317 

activities and these individuals reported the highest levels of water consumption 318 

(3.86 L day-1) as shown in Table 5. Women identifying as housewives (25% of the 319 

surveyed population) had a mean total water intake of 3.28 L day-1. 320 

 321 
 322 
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Table-5 Average daily total water intake of various occupational categories 323 
  324 

Category   Occupation Count Mean total water intake  
(L day

-1
 person

-1
) 

Labour 
intensive 

Masonry workers 2 5.35 
Driver 1 3.91 
Farmers and agriculture labours 186 3.86 
Tailor 4 3.69 
Security Guard 1 3.55 

Non-Labour 
intensive 

House Wife 101 3.28 
Student 75 2.93 
Health Worker 1 2.69 
Police Man 1 1.90 
Homeopath Doctor 1 3.40 
Teacher 4 2.90 
Others (including old aged 
participants and non-school going 
children) 

18 3.25 

NA including infants 3 1.50 

 325 

3.4 Role of water intake values for cancer risk assessment  326 

Human health risk assessment studies (Khan et al., 2015; Shah et al., 2012; 327 

Muhammad et al., 2011 and Muhammad et al., 2010) undertaken in Pakistan have 328 

used USEPA (1989) default water intake (2 L day-1) and body weight (72 kg) values. 329 

This study has demonstrated that water intake was generally higher in the rural 330 

population of Pakistan than the revised USEPA (2011b) default water intake (2.5 L 331 

day-1: updated from 2 L day-1 in 2011) with an average daily total water consumption 332 

of 3.5 L day-1 (men: 3.9 L day-1, women: 3.2 L day-1, children: 2.8 L day-1). This 333 

difference in per capita drinking water consumption might contribute to considerably 334 

higher risks resulting from exposure to chemical contaminants in water. Using 335 

arsenic as an example, higher water intake levels might increase risk estimates for 336 

rural populations affected by arsenic-contaminated groundwater. To assess the 337 

impact of using default or generic as opposed to population specific intake levels, 338 

cancer risk assessment (Table-1: Equation-2) was carried out using intake variables 339 

(Table 2) from the present study and compared to USEPA default (2011b) and WHO 340 

recommended (2011) values. The only difference between the three scenarios 341 

(called present study; USEPA and WHO) is water intake (Table 2). The results of the 342 

risk assessment are provided in Table-6. Three risk levels were defined on the basis 343 

of risks above maximum allowable concentrations of 10 µg L-1 (WHO, USEPA), 50 344 
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µg L-1 (Pakistan Standards Quality Control Authority, 2010) and reported levels of 345 

>100 µg L-1 for arsenic concentration in drinking water (Table 2). 346 
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Table-6: Lifetime (Cumulative) Cancer risk point estimates of arsenic intake from water using input variables from the present  347 
study, USEPA and WHO 348 
  349 

Water Intake data 
source 

Parameters Statistics 
Children Overall Adults  

(16-67 years) 3-6 years  6-16 years 

Pakistan  
(Present study) 

Study participants n 5 61 332 

ADAF   3 3 1 

Body weight (kg) 
mean 12 26 63 

SD 3 8 15 

Age-wise exposure 
duration  

years 3* 10 51 

CR level-1 mean (LB, UB) 0.0017 (0.0014, 0.0017) 0.0014 (0.0011, 0.0014) 0.0006 (0.0006, 0.0006) 

CR level-2 mean (LB UB) 0.0087 (0.0072, 0.0088) 0.0070 (0.0057, 0.0072) 0.0033 (0.0032, 0.0034) 

CR level-3 mean (LB, UB) 0.0173 (0.0142, 0.0176) 0.0141 (0.0110, 0.0143) 0.0065 (0.0063, 0.0067) 

USEPA** 

CR level-1 mean  0.0006 0.0006 0.0005 

CR level-2 mean  0.0032 0.0029 0.0023 

CR level-3 mean  0.0064 0.0058 0.0045 

WHO** 

CR level-1 mean  0.0008 0.0006 0.0004 

CR level-2 mean  0.0039 0.0031 0.0018 

CR level-3 mean  0.0079 0.0062 0.0036 

 *minimum age of study participants 350 
CR: Cancer risk, SD: Standard deviation 351 
CR level-1 (>10 µg L-1); CR level-2 (>50 µg L-1); CR level-3 (>100 µg L-1) 352 
** SDs not available for USEPA default and WHO recommended water intake values. 353 
 354 
 355 
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Cumulative cancer risks for an exposure duration of 3 to 67 years at all three risk 356 

levels and using three different water intake data sources (present study, USEPA 357 

and WHO) were found to be above the acceptable USEPA cancer risk criteria of 1.0 358 

× 10−4 (i.e. 1 case of cancer per every 10,000) (Table 6). The, lifetime (cumulative) 359 

cancer risk at all three risk levels was found to be highest when applying total water 360 

intake values from this study (i.e. at lowest risk level, early life exposure with 17 361 

chances in a population of 10000 children of age 3-6 years, 14 children in 10000 of 362 

age 6-16 years and 6 men or women in a population of 10000).  363 

Whereas, cancer risk with USEPA default water intake (at lowest risk level, 6 364 

chances in a population of 10000 children of both age groups 3-6 and 6-16 years, 365 

later age risk of 5 men or women in 10000 having 51 years of exposure (starting 366 

from 16 and continued to 67 years) and with WHO recommended water intake  367 

demonstrated an early age exposure of 8 in 10,000 children of 3-6 years, 6 in 10,000 368 

children of 6-16 years and 4 in 10,000 adults, were found to be lower than this study 369 

(Table 6). Similarly cancer risk at risk levels 2 (>50 µg L-1) and 3 (>100 µg L-1) 370 

applying water intake from the present study compared to USEPA default and WHO 371 

recommended water intake values (Table 2) were revealed to be the highest for all 372 

age groups suggesting the significance of population specific water intake for cancer 373 

risk estimation. 374 

These findings suggest that using the USEPA default water intake (i.e. 2.5 L day-1 for 375 

adults or 0.3-0.5 L day-1 for children aged 3-16 years) in regions having higher water 376 

intake than USA/Europe (e.g. South Asia, Africa etc.) may underestimate cancer 377 

risks and, conversely, for lower intake areas, the results might be over-estimated. 378 

USEPA default water intake values are based on the National Health and Nutrition 379 

Examination Surveys (1999–2010) but are used for worldwide risk assessment 380 

studies despite being lower than water intake values for warmer and developing 381 

areas of the world. Even in certain warmer parts of USA (i.e. California, Arizona) or 382 

during summer seasons, people may drink 4 to 4.5 L day-1 (USEPA, 1997; USEPA, 383 

2000). Thus, the USEPA default value (2.5 L day-1) or WHO recommendation of (1 L 384 

day-1 for children and 2.0 L day-1 for adults) may underestimate the risks for large 385 

numbers of people working in hot and humid environments (WHO, 2004). Cancer 386 

risk was calculated on the basis of total water intake (sum of direct and indirect water 387 

intake). Cancer risk determined from present study has also indicated that children 388 

are at higher risk than adults suggesting an increased carcinogenic potency during 389 
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early life stages due to body weight and water intakes differences. This also 390 

suggests that lifetime cancer risk for children is much higher due to exposure during 391 

early life stages as compared to adults having exposure during later stages in life. 392 

3.5 Role of food intake values for cancer risk assessment 393 

In addition to water, food must be considered as an exposure pathway for arsenic 394 

although there have been much fewer studies for food than water (Schoof et al. 395 

1999; Tao and Bolger. 1999; Hughes. 2006; Cascio et al. 2011). Human health risk 396 

assessments for arsenic in rice require a number of input parameters, such as 397 

amount of rice consumed and arsenic concentration in raw or cooked rice.  398 

Past studies have reported rice arsenic levels as 0.32 mg/kg in France, 0.13-0.16 399 

mg/kg in Spain, 0.13 mg/kg in California, 0.2 mg/kg in Arkansas, USA, 0.33-0.45 400 

mg/kg in India, and 0.164 mg/kg in Pakistan (Saleem et al. 1988; Meharg et al. 2007; 401 

Bhattacharya et al. 2010). For the purposes of this risk assessment exercise, a 402 

conservative arsenic level reported for rice in Pakistan was selected (0.082 mg kg-403 
1;Table-2; Rasheed et al. 2016) which is applicable to areas not traditionally 404 

associated with high environmental arsenic levels. Therefore, using the average 405 

daily rice intake determined in this study compared to intake parameters reported by 406 

other studies (Table 2) in Equations 1 and 2 (Table-1), it was possible to assess and 407 

compare the cumulative cancer risk of consumption of arsenic-contaminated rice 408 

(Figure-2). 409 
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 410 

 411 

Figure-2: Cumulative cancer risk (point estimates at 95% CI) quantified from rice 412 
intake values of present study and previously published studies: the only parameter 413 

that is changed in each risk assessment is rice intake 414 
 415 

Cancer risk due to rice consumption was found to be potentially higher in 416 

Bangladesh and India compared to the levels obtained for Pakistan in this study 417 

(Figure 2) based on differences in rice consumption values. Previous risk 418 

assessments for arsenic exposure through rice consumption in India reported risk 419 

results closer to this study using Indian intake values i.e. 7 adults in population of 420 

10,000 (Meharg et al. 2009; Mondal and Polya. 2008). Past studies in Bangladesh 421 

(Meharg et al. 2009) also report quite similar levels of cancer risk (with 19 women 422 

and 22 men in a population of 10,000) in adult life as that shown in Figure 2. Cancer 423 

risk results using USA/European rice intake (i.e. 3 adults in population of 10,000) 424 

were also found to be similar to those identified by Meharg and co-workers (2009). 425 

So whilst the mean arsenic concentration used in the calculations is at the lower end 426 

of the reported arsenic concentration spectrum, residual cancer risk was still 427 

identified: using a higher arsenic concentration level, for instance, use of the recently 428 

established advisory limit of 0.2 mg kg-1 for arsenic in rice would lead to a higher 429 
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cancer risk. This therefore suggests frequent rice consumption even at low arsenic 430 

concentrations may be a significant contributing factor for increased health risks from 431 

arsenic exposure. This fact is supported by the work of Banerjee and co-workers 432 

(2013), who showed that consuming arsenic-containing cooked rice as a staple 433 

food is associated with elevated genotoxic effects. It is further assumed that the 434 

arsenic concentration of raw rice and rice cooking water, volume of cooking water, 435 

cooking method and types of rice influence the arsenic level of cooked rice (Ohno et 436 

al. 2007). Rinsing, washing and cooking in a high volume of water and discarding 437 

excess water were found effective to reduce the inorganic arsenic content of cooked 438 

rice by 50% but had no effect on organic arsenic (Raab et al 2009). In the study 439 

area, most of the households had their own ground water source from where water 440 

was obtained for drinking, cooking, washing, bathing etc. Higher arsenic levels in 441 

their ground water sources is expected as evidenced from previous studies (Tahir 442 

and Rasheed, 2014; Mahar et al. 2015; Shakoor et al. 2015). Thus, rice cooking in a 443 

high volume of water was observed to be more prevalent however the arsenic level 444 

of cooking water is likely to be a reason for higher dietary arsenic exposure and 445 

requires further investigation. 446 

In comparison to water and rice, there are very limited arsenic risk assessment 447 

studies for wheat. Studies show that wheat does take up arsenic from soil, indicating 448 

that wheat consumption is a potential exposure route (William et al. 2007). Arsenic 449 

has been identified in wheat grains at levels of 0.02 mg kg-1 in USA (Gartrell et al. 450 

1986), 0.05 mg kg-1 in Netherlands (Wiersma et al. 1986), 362 mg kg-1 in India 451 

(Roychowdhury et al. 2002), 0.129 mg kg-1 in India (Bhattacharya et al. 2010), 0.127 452 

mg kg-1 in Pakistan (Saleem et al. 1988) and 0.175-0.317 mg kg-1 in Sindh, Pakistan 453 

(Arain et al. 2009). A mean arsenic concentration of 0.012 mg kg-1 in wheat grains 454 

(Al-Othman et al. 2013) was used in the risk assessments, reflecting a conservative 455 

estimate of arsenic concentration for arsenic-affected countries whilst being 456 

applicable to regions with lower environmental arsenic levels. Using wheat intake 457 

values of this study and those reported for other countries or regions (Table 2), 458 

cancer risk was found to be within the USEPA acceptable cancer risk range of 1.0 × 459 

10−4 for Bangladesh, China, Europe and the USA intake values. However, for 460 

Pakistan, where wheat intake is comparatively higher, cumulative cancer risk was 461 

found to be 2 persons (95% CI 0.0002, 0.0002) in a population of 10,000 with 462 

exposure initiating during 3-16 years.   463 
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3.6 Relative cancer risk (point estimates) from water and food sources 464 

Multiple exposures are important when considering overall cancer risk hence it is 465 

important to consider the combined contributions made by water (>10 µg L-1) and 466 

food to arsenic exposure. Using the water and food intake values (rice and wheat 467 

only) of this study, cumulative cancer risk is depicted in Figure 3 showing relative risk 468 

contribution by total water (51%), rice (44%) and wheat (5%) intake for different sub-469 

populations (Figure 3). Food sources like rice are therefore a considerable 470 

contributing factor for exposure to waterborne contaminants such as arsenic, so 471 

knowledge of intake values (as well as contaminant loading) for different food stuffs 472 

is important to elucidate overall cancer risk.  473 

 474 

Figure-3: Cancer risk (point estimates at 95% CI) based on the average 475 
daily water, rice and wheat intake values of present study and exposure duration of 3-476 

67 years of study participants 477 
 478 

3.7 Probabilistic Risk Assessment approach 479 

3.7.1  Results of probability distribution of input parameters 480 
 481 
The sample data of arsenic concentration >10 µg L-1 of 17 districts (Tahir and 482 

Rasheed, 2014; Ahmad et al. 2004) and age data of 398 study participants were 483 
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selected to define probability distributions. The optimal fitted distributions of arsenic 484 

concentration >10 µg L-1 and age of participants were characterised by a 485 

Generalized Pareto distribution and Rician distribution respectively as indicated by a 486 

set of parameters (Table 7).  487 

 488 
 Table-7 Probability distribution of arsenic in ground water and age of study participants 489 

Probability Distribution 

Arsenic concentration in water Age of study participants 

Original 
Data 

Generalized 
Pareto  
distribution 

Original 
Data 

Rician Distribution 

Minimum 10.0 10.0 3 3 
Mean 52.5 52.6 36 34 
Median 29.4 32.7 36 32 
Percentile 95th  166.0 154.4 62 64 
Maximum 972.0 809.6 80 83 
Standard deviation 63.3 63.7 17 16 
Variance 4007.5 4052.7 289 272 
Std. mean error 0.926 0.931 0.852 0.826 

t-test for  
equality of  
means 

 P= 0.392  P = 0.085 

 490 
 491 

The body weights of participants were fitted with respect to their ages based on 492 

Fourier fit in MATLAB (Supplementary information Figure S-1).  493 

 494 
3.7.2 Probabilistic cancer risk 495 
 496 

Probabilistic risk assessment is an improved approach to deterministic cancer risk 497 

estimation (point estimation). To better consider the uncertainty inherent in dietary 498 

data, probabilistic outputs were associated with seven different age groups as shown 499 

in Table 8. Using Monte Carlo simulations applied to ADAF transformed data for 500 

water, rice and wheat and combined dietary factors (Table 8 and 9), the results were 501 

found to be similar to point estimates with lifetime cancer risk of water and rice 502 

higher for intake values determined from this study compared to the USEPA 503 

regulatory threshold target cancer risk of 1.0 x 10-4 suggesting probable association 504 

between dietary intake and arsenic concentration levels.  505 

 506 
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Table-8 Probabilistic cancer risk (average risk from 10,000 permutations) exposed to arsenic in water  507 
at different age groups 508 

Age 

groups 

(Years) 

Mean 

95% CI 
Standard 
Deviation 

Minimum Maximum Median 75
th

 percentile 95
th

 percentile 
LB UB 

 3-6 0.0073 0.0061 0.0084 0.0072 0.0016 0.0626 0.0056 0.0093 0.0183 

 6-16 0.0052 0.0049 0.0056 0.0055 0.0007 0.0624 0.0034 0.0064 0.0152 

16-26 0.0042 0.0040 0.0044 0.0047 0.0006 0.0507 0.0027 0.0051 0.0128 

26-36 0.0026 0.0025 0.0028 0.0031 0.0004 0.0439 0.0017 0.0031 0.0079 

36-46 0.0016 0.0015 0.0017 0.0017 0.0003 0.0283 0.0010 0.0019 0.0045 

46-56 0.0010 0.0009 0.0010 0.0011 0.0001 0.0097 0.0006 0.0012 0.0031 

56-67 0.0003 0.0003 0.0004 0.0004 0.0000 0.0064 0.0002 0.0004 0.0011 

CI: Confidence Interval, LB: Lower bound, UB: Upper bound 509 
 510 
Table-9 Probabilistic cancer risk (average risk from 10,000 permutations) exposed to arsenic in rice and  511 
wheat at different age groups 512 

Age groups 

(Years) 

CR-Rice CR-Wheat 

Mean 
95% CI Standard 

Deviation 
Mean 

95% CI Standard 
Deviation LB UB LB UB 

 3-6 0.0014 0.0014 0.0014 0.00005 0.0002 0.0002 0.0002 0.00001 

 6-16 0.0011 0.0011 0.0011 0.00029 0.0001 0.0001 0.0001 0.00003 

16-26 0.0010 0.0010 0.0010 0.00020 0.0001 0.0001 0.0001 0.00002 

26-36 0.0006 0.0006 0.0006 0.00008 0.0001 0.0001 0.0001 0.00001 

36-46 0.0004 0.0004 0.0004 0.00005 0.0000 0.0000 0.0000 0.00001 

46-56 0.0002 0.0002 0.0002 0.00004 0.0000 0.0000 0.0000 0.00000 

56-67 0.0001 0.0001 0.0001 0.00004 0.0000 0.0000 0.0000 0.00000 
CI: Confidence Interval, LB: Lower bound, UB: Upper bound 513 
 514 

 515 
 516 
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It is interesting to note that highest cumulative exposure from water and food 517 

sources initiating at age 3-6 years resulted in the risk probability of 89 children and 518 

ranging to 4 adults of age 56-67 in a population of 10,000. The findings are attributed 519 

to the incorporation of age dependent adjustment factors (ADAFs) which accounts 520 

for adjustment in cancer slope factor according to age. Thus, age adjusted 521 

probabilistic cancer risk from food intake of this study population hold a considerable 522 

contribution and cannot be neglected in risk quantification process (Figure-4 and 5). 523 

 524 

 525 
 526 

Figure-4 Cumulative probability distributions of age adjusted cancer risk from water 527 
and food intake for an exposure duration initiating at minimum age of study 528 

participant i.e. 3 years proceeding to age 67 years 529 
 530 
 531 
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 532 
Figure-5 Cumulative probability distributions of age adjusted excess  533 

lifetime cancer risk from water and food intake (rice and wheat combined)  534 
and both (total risk) for the studied population 535 

 536 

4.  Conclusions 537 
 538 
Mean total water intake (3.5 L day-1) quantified on the basis of direct plain drinking 539 

water (2.7 L day-1) and indirect water from food and beverages (0.8 L day-1) for rural 540 

villages in Pakistan was found to be higher than the reported or recommended water 541 

intake of many developed countries. Comparison of the intake values determined for 542 

Pakistan with the USEPA default and the WHO recommended daily water intake in a 543 

cancer risk assessment model revealed a higher total cancer risk of 17 for children of 544 

3-6 years (95% CI 0.0014, 0.0017), 14 for children of 6-16 years (95% CI 0.001, 545 

0.0011) and 6 for adults of 16-67 years (95% CI, 0.0006, 0.0006) in a population of 546 

10,000.  This compares to respective figures of 6, 6 and 5 (USEPA) and 8, 6 and 4 ( 547 

WHO). This difference at arsenic exposures above 10 µg L-1 shows the importance of 548 

population specific water intake values and the need to include indirect water 549 

sources in risk assessments.  550 

Food is another significant exposure route for chemical risk. Mean average food 551 

intake in rural Pakistan was found to be 789 g day-1 consisting of wheat (402 g day-552 
1), rice (469 g day-1), pulses (234 g day-1), vegetables (170 g day-1) and chicken (166 553 

g day-1). Consumption of rice was found to be higher than rice intake levels reported 554 



27 

 

in USA (172.6 g day-1), Europe (175 g day-1), but consistent with intake levels 555 

reported for Bangladesh (1789 g day-1) and India (862 g day-1). Comparison of the 556 

rice intake values determined for Pakistan with these reported rice intake levels in 557 

the USEPA cancer risk assessment model revealed a lifetime cancer risk of 15 for 558 

children of3-6 years, 14 for children of6-16 years and 8 for adults. This compares to 559 

figures of 20 for children (6-16 years) and 11 for adults with Indian rice intake or 43 560 

for children (6-16 years) and 25 for adults with Bangladesh rice intake). Using 561 

US/European rice intake values the risk for adults is 3 ) in a population size of 562 

10000. This shows that countries with the highest consumption of rice have 563 

potentially higher cancer risks associated with arsenic exposure: India, Pakistan and 564 

Bangladesh all have environmental arsenic problems whilst US/European markets 565 

might import from these areas. Using wheat intake values from this study (402 g day-566 
1) has revealed a total cancer risk of 2 children (3-16 years) and 1 adult of 16-67 567 

years. Whereas, with wheat intake reported for Bangladesh (131-179 g day-1), China 568 

(13-44 g day-1), Europe (182 g day-1) and USA (48 g day-1), cancer risk was found to 569 

be within the USEPA acceptable cancer risk range of 1.0 × 10−4 highlighting the role 570 

of the wheat intake and arsenic concentration level in the risk assessment process (a 571 

conservative estimate used). These results are further supported by uncertainty 572 

analysis using a probabilistic approach indicating the significance of population 573 

specific dietary intake values, arsenic concentrations in water and age of participants 574 

in determining cancer risk estimates. 575 

The study findings demonstrate that population specific model values realistically 576 

reflect the local situation, whilst also showing that consideration of multiple exposure 577 

sources, e.g. water and food sources with respect to age provide a more robust risk 578 

assessment. The population specific dietary information from this study may hold 579 

significance for future studies to understand a range of age adjusted dietary 580 

exposure risks. 581 
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Table-S-1: Water and food intake calculation formulae  947 

Equation No. Food item Unit and 

Eqv weight* 

(g)* 

Water 

used* (g) 

Weight per 

serving  

Volume of 

water (ml) 

Equation used to calculate water (L person 
-1
 day

-1
) or  

food intake (g person 
-1
 day

-1
) 

(1) Tea, black, brewed, 
prepared with tap 
water (without milk) 

1 cup  
(237 g) 

 
236.29 120-200 ml 249.48 激荊痛勅銚 噺 軽剣 剣血 潔憲喧嫌 潔剣券嫌憲兼結穴 喧結堅 穴欠検 抜  兼健 剣血 拳欠建結堅 喧結堅 潔憲喧 鳩 などどど 

(2) Whole milk 1 cup 
 (245 g) 

215.38   
5-10 ml  

(added in tea) 
4.4-8.8  - 

(3) Fermented dairy drink 
(Lassi) 

1 glass 96.2%** 250 ml 240 激荊鎮銚鎚鎚沈 噺  軽剣┻ 剣血 訣健欠嫌嫌 潔剣券嫌憲兼結穴 喧結堅 穴欠検 抜  にねど 兼健 剣血 拳欠建結堅 鳩 などどど 

(4) Rice, white, medium-
grain, cooked 

1 cup  
(186 g) 

127.61   
(69%)   

300-414 g 206-284 激荊頂墜墜賃勅鳥 追沈頂勅  噺 潔剣剣倦結穴 堅件潔結 件券建欠倦結 件券 訣兼  抜  ど┻はひ 鳩 などどど 

(5) Red and White, Lentil 
Soup, condensed 

1 cup  
(252 g) 

 
179.42   150 g 107 激荊椎通鎮鎚勅鎚 噺 軽剣┻ 剣血 嫌結堅懸件券訣嫌 岫なのど 訣岻  抜  兼健 剣血 拳欠建結堅 岫などば 兼健岻【などどど 

(6) Bread, Chapatti or 
Roti, plain, 
commercially 
prepared 

1 piece  
(68 g) 

22.44  
80-90 g 

(Av: 85 g) 
28  激荊頂朕銚椎銚痛痛沈  噺 軽剣┻ 剣血 憲券件建嫌 潔剣券嫌憲兼結穴 岫ぱの 訣岻 抜 にぱ 兼健 剣血 拳欠建結堅【などどど 

(7) Water intake from 
direct sources 

- - - -  辰辿嘆奪達担   噺               岫にどど 伐 にのど   岻 抜   ┻                 鳩 などどど 

(8) Water intake from 
indirect sources 

- - - - 劇激沈津鳥沈追勅頂痛 噺   激荊痛勅銚 袋鎮銚鎚鎚沈袋頂墜墜賃勅鳥 追沈頂勅袋椎通鎮鎚勅鎚袋頂朕銚椎銚痛痛沈  
(9) Total water intake - - - - 激荊痛墜痛銚鎮  噺   劇激鳥沈追勅頂痛   髪  劇激沈津鳥沈追勅頂痛 

(10) Total daily intake of 
food (TDFI) 

- - - - 劇経荊繋 噺  激結件訣月建 剣血血剣剣穴 兼結欠嫌憲堅結穴 剣券 喧健欠建結 決剣拳健エ 抜 軽剣┻ 剣血 嫌結堅懸件券訣嫌 喧結堅 穴欠検 

 948 
Whereas: WI= Water intake (L person 

-1
 day

-1
) 949 

* Standard values recommended by Standard Reference Release-27, National Nutrient Database of United States Department of Agriculture (USDA) (Agricultural Research Service, 2014) 950 
**Lassi containing 96.2% water (Padghan et al., 2015)        951 
  952 
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Table-S-2: Description of study area participants 953 
 954 

Parameter 
  Villages 

overall 
unit Chak-46/12-L Chak-48/12-I Chak 49/12-l  Basti Balochan Badarpur 

Basti Kotla 
Arab 

Households reported by PBS n 447 412 522 260  395 319  1776 

Average household size n 7 7 7 7  8 8  29  

Population reported by PBS n 3,195 3,037 3,986 2036 3,393 2345  15647 

Male population n 1,599 1,559 2,071 1,006 1,714  1210  7949 

Female population n 1,596 1,478 1,915 1,030 1,679 1135  7698  

Literacy ratio % 34.1 53.7 59.1 24 43.4 23 14 

Households willing to 
participate in the study 

n 64 45 50 26 26 29 240 

 Sampled houses   % 15 11 10  10 10  15  14 

Total participants n 121 54 75 44 34 70 398 

Men  n 79 49 59 14 20 28 249 

Age range 
< 16 n 19 4 6 6 0 8 43 

≥16 n 60 45 53 8 20 20 206 

Body weight 
range (kg) 

< 35 kg n 19 0 13 25 . 6 -- 

≥ 35 kg n 69 52 55 32 51 48 -- 

Women  n               

Age range 
< 16 n 7 2 2 2 1 9 23 

≥16 n 35 3 14 28 13 33 126 

Body weight 
 range (kg) 

< 35 kg n 20 1 13 16 0 19 -- 

≥ 35 kg n 68 14 41 30 38 36 -- 
Source: Pakistan Bureau of Statistics (PBS) 955 
 956 
 957 
 958 
 959 
 960 
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 961 
Table-S-3: Food and beverages sources contributing to indirect water intake (L person -1 day-1) 962 
 963 

Villages Age groups 
Indirect water intake 

Sources   

Wheat 
Chapatti 

Rice Pulses Tea Lassi 

Minimum Maximum Mean SD Mean Mean Mean Mean Mean 

Chak-46/12-L 
Age < 16 0.1 1.0 0.4 0.2 0.1 0.2 0.1 0.1 0.3 

Age > 16 0.2 2.0 0.8 0.4 0.1 0.4 0.2 0.2 0.5 

Chak-48/12-I 
Age < 16 0.3 1.9 1.1 0.6 0.1 0.2 0.2 0.3 0.9 

Age > 16 0.4 2.2 1.1 0.5 0.1 0.3 0.2 0.3 0.8 

Chak 49/12-l 
Age < 16 0.1 1.2 0.4 0.3 0.1 0.1 0.1 0.1 1.0 

Age > 16 0.3 2.3 0.9 0.4 0.1 0.4 0.2 0.4 0.5 

Basti Balochan 
Age < 16 0.1 1.0 0.6 0.3 0.1 0.2 0.1 0.2 0.3 

Age > 16 0.3 1.4 0.7 0.3 0.1 0.2 0.2 0.2 0.4 

Badarpur 
Age < 16 0.3 0.3 0.3 0.0 0.1 0.0 0.1 0.1 0.0 

Age > 16 0.3 2.4 1.0 0.5 0.1 0.4 0.2 0.2 0.7 

Kotla Arab 
Age < 16 0.1 1.4 0.6 0.4 0.1 0.1 0.1 0.2 0.7 

Age > 16 0.3 1.9 1.0 0.5 0.1 0.3 0.2 0.2 0.7 

Total 

Age < 16 0.1 1.9 0.6 0.4 0.1 0.2 0.1 0.2 0.5 

Age > 16 0.2 2.4 0.9 0.4 0.1 0.4 0.2 0.3 0.6 

Overall 0.1 2.4 0.8 0.4 0.1 0.3 0.2 0.2 0.6 

 964 
 965 
 966 
  967 
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 968 
Table-S-4: Village wise average daily water intake (L day-1 person-1) of the study population 969 
 970 

Village Sex 
Age groups 
(years) 

Direct Water Intake  In-direct Water Intake Total Water Intake Total Water Intake 

(L person
-1 

day
-1

) (L person
-1 

day
-1

) (L person
-1 

day
-1

) (L kg 
-1

 day
-1

) 
Mean SD Mean SD Mean SD Mean SD 

Chak-46/12-L 

Children 
3-6 1.6 0.2 0.1 0.0 1.8 0.2 0.1 0.0 
6-16 2.3 0.5 0.5 0.2 2.8 0.5 0.1 0.0 
Overall  < 16 2.3 0.5 0.4 0.2 2.7 0.6 0.1 0.0 

Male ≥ 16 3.0 0.8 0.9 0.4 3.9 0.9 0.1 0.0 
Female ≥ 16 2.5 0.4 0.7 0.3 3.2 0.6 0.1 0.0 
Average intake 
(irrespective of  sex) 

≥ 16 2.8 0.7 0.8 0.4 3.6 0.8 0.1 0.0 

Average intake  All participants 2.7 0.7 0.7 0.4 3.4 0.9 0.1 0.0 

Chak-48/12-I 

Children 
3-6 . . . . . . . . 
6-16 2.6 0.3 1.1 0.6 3.8 0.6 0.1 0.1 
Overall  < 16 2.6 0.3 1.1 0.6 3.8 .6 0.1 0.1 

Male ≥ 16 2.9 0.9 1.1 0.6 4.0 1.2 0.1 0.0 
Female ≥ 16 2.7 0.4 1.0 0.2 3.8 0.5 0.1 0.0 
Average intake 
(irrespective of  sex) 

≥ 16 2.8 0.9 1.1 0.5 3.9 1.2 0.1 0.0 

Average intake  All participants 2.8 0.9 1.1 0.5 3.9 1.1 0.1 0.0 

Chak 49/12-l 

Children 
3-6 1.8 0.8 0.7 0.7 2.5 1.6 0.2 0.0 
6-16 2.4 0.7 0.3 0.1 2.7 0.8 0.1 0.0 
Overall  < 16 2.3 0.8 0.4 0.3 2.7 0.9 0.1 0.0 

Male ≥ 16 2.7 0.9 0.9 0.4 3.6 0.9 0.1 0.0 
Female ≥ 16 2.0 0.3 0.8 0.3 2.8 0.5 0.1 0.0 
Average intake 
(irrespective of  sex) 

≥ 16 2.5 0.8 0.9 0.4 3.4 0.9 0.1 0.0 

Average intake  All participants 2.5 0.8 0.8 0.4 3.3 0.9 0.1 0.0 

Basti Balochan 

Children 
3-6 1.2 0.0 0.1 0.0 1.3 0.0 0.1 0.0 
6-16 2.5 0.6 0.7 0.2 3.1 0.7 0.1 0.0 
Overall  < 16 2.3 0.7 0.6 0.3 2.9 0.9 0.1 0.0 

Male ≥ 16 3.4 0.5 0.6 0.2 4.0 0.5 0.1 0.0 
Female ≥ 16 2.4 0.4 0.7 0.3 3.1 0.4 0.1 0.0 
Average intake 
(irrespective of  sex) 

≥ 16 2.7 0.6 0.7 0.3 3.3 0.6 0.1 0.0 

Average intake  All participants 2.6 0.6 0.6 0.3 3.2 0.7 0.1 0.0 

Badarpur 
Children 

3-6 . . . . . . . . 
6-16 2.4 0.0 0.3 0.0 2.7 0.0 0.1 0.0 
Overall  < 16 2.4 0.0 0.3 0.0 2.7 0.0 0.1 0.0 

Male ≥ 16 3.2 0.4 1.0 0.5 4.2 0.6 0.1 0.0 
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Female ≥ 16 3.0 0.5 0.9 0.6 3.9 0.7 0.1 0.0 
Average intake 
(irrespective of  sex) 

≥ 16 3.1 0.4 1.0 0.5 4.1 0.7 0.1 0.0 

Average intake  All participants 3.1 0.4 0.9 0.5 4.0 0.7 0.1 0.0 

Kotla Arab 

Children 
3-6 . . . . . . . . 
6-16 2.1 0.4 0.6 0.4 2.8 0.6 0.1 0.0 
Overall  < 16 2.1 0.4 0.6 0.4 2.8 0.6 0.1 0.0 

Male ≥ 16 2.9 1.1 1.1 0.5 4.0 1.3 0.1 0.0 
Female ≥ 16 2.1 0.7 0.9 0.4 3.0 0.8 0.1 0.0 
Average intake 
(irrespective of  sex) 

≥ 16 2.4 0.9 1.0 0.5 3.4 1.2 0.1 0.0 

Average intake  All participants 2.4 0.8 0.9 0.5 3.2 1.1 0.1 0.0 

Overall (All 
villages) 

Children (both sex) <16 2.3 0.5 0.6 0.4 2.8 0.7 0.1 0.0 
Male ≥ 16 2.9 0.9 1.0 0.5 3.9 1.0 0.1 0.0 
Female ≥ 16 2.4 0.5 0.8 0.4 3.2 0.7 0.1 0.0 
Average intake 
(irrespective of  sex) 

≥ 16 2.7 0.8 0.9 0.4 3.6 0.9 0.1 0.0 

Average intake  All participants 2.6 0.8 0.8 0.4 3.5 1.0 0.1 0.0 

 971 
 972 
  973 
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Table-S-5: Reported water intake values in different countries 974 
 975 

Country 
Male Female All adults 

Type Reference 
n age range L day

-1
 n age range L day

-1
 n 

age 
range 

L day
-1

 

Australia ND 19+ 3.4 ND 19+ 2.8 ND 19+ 3.1 water, hot and cold 
beverage intake 

CSIRO & University of 
South Australia (2008) 

Australia ND ND ND ND ND ND ND ND 2 water NHMRC and NRMMC 
(2011) 

Canada ND ND ND ND ND ND 8,916 ND 1.2 water Roche et al.(2012) 
Canada 37 ND ND 88 ND ND 125 20 to 64 1.6 Water, beverages and 

liquid food 
Levallois et al. (1998) 

Canada ND ND ND ND ND ND 4532 ND 1 water Jones et al. (2007) 
USA ND >19 3 ND ND 3 4,112 >19 3.17 total fluids intake Kante et al. (2009) 
USA 7614 ND ND 8088 ND ND 15702 20 to ≥71 3.5 water, hot and cold 

beverage intake 
Drewnowski et al. (2013) 

USA-Winters ND ND ND ND ND ND 2458 ND 0.983 water Barraj et al. (2009) 
USA-
summers 

ND ND ND ND ND ND 1740 ND 1.1 water Barraj et al. (2009) 

USA ND ND ND ND ND ND 20,000 <1 month 
to >65 
years 

2.6 water Kahn and Stralka (2009) 

USA 11,888 <1 to >65 2.261 14193 <1 to >65 1.919 26081 20 to 65 2.07 direct and indirect water 
intake (beverages and 
food) 

Ershow and Cantor 
(1989). 

USA ND ND ND ND ND ND ND ≥21 2.5 water USEPA (2011a) 
USA ND ND 1.3 ND ND 1.18 20,261 <1 to >20 1 water USEPA (2004) 
Mexico  574 ND 1.77 ND ND 1.84 1498 38.6 1.81  total fluids intake Martinez (2014) 
Mexico ND 18 to ≥50 ND ND ND ND 80 20–65 1.81 water Del Razo et al. (2002) 
Brazil  941 18 to ≥50 2.34 983 18 to ≥50 2.1 1924 ND 2.22 water, hot and cold 

beverage intake 
Guelinckx et al. (2015) 

Argentina  241 18 to ≥50 2.32 266 18 to ≥50 2.29 507 ND 2.3 water, hot and cold 
beverage intake 

Guelinckx et al. (2015) 

UK 1,758 1 to >55 1.07 1,800 1 to>55 1.87 3,564 1 to >55 1.59 water, hot and cold 
beverage intake 

Hopkins and Ellis (1980) 

UK  371 ND 2.24 526 ND 2.37 897 ND 2.32 total fluids intake Gandy (2015) 
Spain  630 18 to ≥50 1.94 610 18 to ≥50 1.87 1240 ND 1.9 total fluids intake Ferreira-Pego et al. 

(2014) 
France ND ND ND ND ND ND 1361 20 to 54 1.31 water, hot and cold 

beverage intake 
Bellisle et al. (2010) 

France  804 18 to ≥50 1.55 730 18 to ≥50 1.57 1534 ND 1.56 water, hot and cold 
beverage intake 

Guelinckx et al. (2015) 

Poland  517 18 to ≥50 1.7 545 18 to ≥50 1.57 1062 ND 1.64 water, hot and cold Guelinckx et al. (2015) 
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beverage intake 
Turkey  488 18 to ≥50 2.15 473 18 to ≥50 2.17 961 ND 2.21 water, hot and cold 

beverage intake 
Guelinckx et al. (2015) 

France ND ND ND ND ND ND 831 20 to 54 2 water, hot and cold 
beverage intake 

Bellisle et al. (2010) 

Germany 639 >17 3 889 >17 ND 1528 ND ND direct and indirect water 
intake (beverages and 
food) 

Manz et al. (2012) 

Germany  856 18 to ≥50 2.51 1012 18 to ≥50 2.45 1868 ND 2.47 water, hot and cold 
beverage intake 

Guelinckx et al. (2015) 

Sweden 585 ND 2 625 ND 2 1210 ND ND water, hot and cold 
beverage intake 

Shirreffs (2012) 

Sweden ND ND ND ND ND ND 10957 ND 1.86 water and hot beverages Westrell et al. (2006) 
Netherlands 1252 22 to 50 3 1472 22-50 2 2724 ND 1.5 water EFSA (2010) 
Indonesia  444 18 to ≥50 2.33 922 18 to ≥50 2.26 1366 ND 2.28 water, hot and cold 

beverage intake 
Guelinckx et al. (2015) 

Malaysia ND ND 102 103 ND ND ND ND ND water Azlan et al. (2012) 
Pakistan ND ND 102 103 ND ND ND ND 4 water Arain et al. (2009) 
India ND ND 4 ND ND 3 9 ND ND water Chowdhury et al. (2000) 
India 219 ≥15 years 6.1 204 ≥15 years 4.84 423 7 months 

to 90 
years 

4.92 direct and indirect water 
intake (beverages and 
food) 

Hossain et al. (2012) 

India 50 19-68 4.8 50 19-68 3.3 100 19-68 4.5 Water, mixed drinks, rice 
and pulses 

Pokkamthanam et al. 
(2011) 

Bangladesh 127 >14 3.89 323 >14 3.02 ND 0 to >65 ND water Khan et al. (2009) 
Bangladesh ND ND 73.97  

ml kg
-1

 
day

-1
 

ND ND 72.07  
ml kg

-1
 

day
-1

 

640 15 to ≥45 3.53 water Milton et al. (2006) 

Bangladesh 28 16 to 80 3.1 23 20 to 70 2.9 77 6 to 80 3 water Ohno et al. (2007) 
Bangladesh 9 >20 3 9 >20 3 38 20 to 53 3 water Watanabe et al.(2004) 
Bangladesh 113 16 to 73 3.1 108 14 to 65 2.6 232 14 to 65 ND water Mondal et al. (2010) 
Bangladesh 5042 ND 2.9 6704 ND 3.1 ND ND ND water Ahsan et al. (2006) 
Bangladesh ND ND ND ND ND ND 936 20 to 65 2.55 water Kile et al. (2007) 
Pakistan 249 3 to 80 3.70 149 4 to 80 3.11 398 3 to 80 3.50 direct and indirect water 

intake (beverages and 
food) 

Present study 

Iran 283 ND 1.92 289 ND 1.92 572 ND 1.92 total fluids intake Abdollahi et al.(2013) 
China 733 ND 1.78 733 ND 1.75 1466 ND 1.76 total fluids intake Ma et al. (2012) 
Japan 698 18 to ≥50 1.47 683 18 to ≥50 1.52 1381 ND 1.5 water, hot and cold 

beverage intake 
Guelinckx et al. (2015) 

Taiwan ND ND 1.5 ND ND 1 ND ND 1.2 water Liang et al. (2016) 

n: No. of samples, ND: No data976 
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Table-S-6: Average daily rice, wheat and vegetables intake (g day-1 person-1) 977 
reported in different countries/regions 978 
 979 

Country Food item 
Consumption g day

-1
 

Reference 
Children Men Women Mean  

India Rice (cooked)       450 Signes et al. (2008) 

India Rice (cooked) 

400 

around 10 

years of 

age) 

750 750 713 Roy Chowdhary et al. (2002) 

China Rice (cooked) 210     370 Song et al. (2015) 
Sweden Rice (cooked)       44 Sand et al. (2016) 
Korea Rice (cooked)   236.8 187 212 Cha et al. (2012) 
Thailand Rice (cooked)    >200 Ruangwises and Saipan (2010) 
Bangladesh Rice (cooked) 862 1789 1522 1391 Khan et al. (2009) 
Bangladesh  Rice (cooked)       1782 Melkonian et al. (2013) 
Bangladesh Rice (cooked)   523 300   Watanabe et al. (2004) 
Bangladesh Rice (raw)       400 Duxbury et al. (2003) 
Bangladesh Rice (raw)       420 Meharg and Rahman.(2003) 
Cambodia Rice (cooked)       522 Gilbert et al. (2015) 
Bangladesh  Rice (cooked)   776 553 665 Ohno et al. (2007) 
Pakistan Rice(cooked)  253 576 463 372  Present study  
Pakistan Rice(cooked)      259   Aga Khan University et al. (2011) 
Finland  Rice(cooked) 24     83 Rintala et al. (2014) 
USA Rice (Raw) 5   11 17 FDA (2016) 

USA 
Rice 
(Cooked) 

88   172.6 FDA (2016) 

USA Rice (Raw) 17       Marquez and Jensen (2009) 
USA Rice (cooked)       334 Smiciklas-Wright et al. (2002) 
Europe Rice (cooked)       175 EFSA (2014) 
Europe *Rice        12 WHO (2003) 
Africa *Rice       103 WHO (2003) 
Middle East  *Rice       48 WHO (2003) 
Far East  *Rice        279 WHO (2003) 
Latin 
America 

*Rice       87 WHO (2003) 

Cambodia, 
Indonesia, 
Lao People’s 
Democratic 
Republic, 
Mayanmar 
and Vietnam  

Rice 
(raw polished 
rice) 

      >400 Kennedy (2002) 

Cambodia Rice (cooked)    522 Gilbert et al. (2015) 
Vietnam Rice (cooked)    460 Agusa et al. (2006) 
Bangladesh 

Wheat 
 
 
 
 
 
 

  179 131   Watanabe et al. (2004) 
China 13   44 Zeng et al. (2015) 
Europe    182 FAO (2013) 
USA 

   48 

U.S. Department of Health and 
Human Services and U.S. 
Department of Agriculture. (2015–
2020) 

Pakistan       250 Mahmood et al. (2014) 
Pakistan     306   Aga Khan University et al. (2011) 
Pakistan 222 426 358 402 Present study 
Cambodia Vegetables       417-656 Wang et al. (2013) 
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Republic of 
Croatia 

 
 
 
 
 
 

      275 Sapunar et al. (1996) 

Chile       327 Munoz et al. (2005) 
Denmark       376 Helgesen and Larsen (1998) 

India       400-500 
Samal et al. (2011) 
Roychowdhury et al. (2003) 

Pakistan       100  Arain et al. (2009) 
Pakistan 103 187 181 170 Present study 

*raw or cooked status is not mentioned in the WHO/FSF/FOS/97.7. 980 
 981 

Table-S-7: Water and food intake rates with respect to age for probabilistic    982 
cancer risk assessment 983 
 984 

Age groups Total water intake  
(L day

-1
) 

Rice intake (g day
-1

) Wheat intake  
(g day

-1
) 

Age 3-6 1.94 91.38 148.75 

Age 6-16 2.92 272.10 226.91 

Age 16-26 3.36 419.96 359.87 

Age 26-36 3.71 499.16 417.67 

Age 36-46 3.73 586.92 417.74 

Age 46-56 3.59 583.15 425.00 

Age 56-66 3.68 604.64 385.33 

Age > 66 3.57 510.93 347.08 

   985 
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 986 

 987 
Figure-S-1 Age and body weight of participant’s-linear regression  988 

 989 
 General model Fourier Fit:    (Goodness of Fit  R-sq   0.85) 990 
 991 
f(x) =  a0 + a1*cos(x*w) + b1*sin(x*w) 992 
 993 
 Coefficients (with 95% confidence bounds): 994 
a0 =       3.269  (3.139, 3.399) 995 
a1 =     -0.4815  (-0.9603, -0.002601) 996 
b1 =     -0.8643  (-0.9992, -0.7294) 997 
w =       1.047  (0.9079, 1.187) 998 
x  =       ge (in log) 999 
f(x) =    Body Weight (in log) 1000 
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