8 research outputs found

    Comparative histology of the vocal sac in three species of hylid frogs with comments on its functional correlates

    Get PDF
    The vocal sacs of frogs are elastic structures responsible for the circulation of air during vocalization, amplifying the sounds produced by these animals during multimodal communication. Vocal sacs present a wide array of morphologies among species and may be single, paired, or absent in adult males. Most studies on vocal sacs in Anura deal with their external morphology, and not with their internal structure, which has been explored in only a handful of species. The aim of this study was to assess vocal sac structure in three hylid species, Dendropsophus haddadi, D. elegans, and Scinax fuscovarius, using histological techniques. These species differ greatly in the degree of development and histological properties of the gular skin and submandibular musculature. In particular, elastic fibers are abundant in the thick m. interhyoideus and the relatively tight gular skin of S. fuscovarius. In contrast, in both species of Dendropsophus (although more evident in D. elegans), the m. interhyoideus is extremely thin and expanded, with a negligible number of elastic fibers that appear as a loose, pleated sheet when deflated. We analyzed videos of calling males of the three species and their close relatives, which show two different patterns of inflation/deflation. These patterns are strongly correlated with the histological properties of the vocal sac wall. The three species have different vocal sac shapes and rely differently on elasticity for vocal sac function.Os sacos vocais dos anuros sĂŁo estruturas elĂĄsticas responsĂĄveis pela circulação do ar durante a vocalização, amplificando os sons produzidos por esses animais durante a comunicação multimodal. Os sacos vocais apresentam uma ampla gama de morfologias entre as espĂ©cies, podendo ser Ășnicos, pareados ou ausentes em machos adultos. A maioria dos estudos sobre sacos vocais em Anura trata de sua morfologia externa, nĂŁo incluindo dados sobre sua estrutura interna, que foi explorada em apenas algumas espĂ©cies. O objetivo deste estudo foi avaliar a estrutura do saco vocal de trĂȘs espĂ©cies de hilĂ­deos, Dendropsophus haddadi, D. elegans e Scinax fuscovarius, por meio de tĂ©cnicas histolĂłgicas. Essas espĂ©cies diferem muito no grau de desenvolvimento e nas propriedades histolĂłgicas da pele gular e da musculatura submandibular. Em particular, as fibras elĂĄsticas sĂŁo abundantes no mĂșsculo interioidal espesso e pele gular relativamente esticada de S. fuscovarius. Ao contrĂĄrio, em ambas as espĂ©cies de Dendropsophus (embora mais evidente em D. elegans), o mĂșsculo interioidal Ă© extremamente fino e expandido, com conteĂșdo nĂŁo-significativo de fibras elĂĄsticas, aparecendo como uma folha solta e pregueada quando desinflado. Analisamos vĂ­deos de vocalizaçÔes de machos das trĂȘs espĂ©cies e parentes prĂłximos, que mostram dois padrĂ”es bem diferentes de inflação/deflação. AlĂ©m disso, estes estĂŁo fortemente correlacionados com as propriedades histolĂłgicas da parede do saco vocal, uma vez que as trĂȘs espĂ©cies tĂȘm diferentes formatos de saco vocal e dependem diferentemente da elasticidade para a função do saco vocal

    Evolution in the Genus Rhinella: A Total Evidence Phylogenetic Analysis of Neotropical True Toads (Anura: Bufonidae)

    Get PDF
    True toads of the genus Rhinella are among the most common and diverse group of Neotropical anurans. These toads are widely distributed throughout South America, inhabiting a great diversity of environments and ecoregions. Currently, however, the genus is defined solely on the basis of molecular characters, and it lacks a proper diagnosis. Although some phenetic species groups have traditionally been recognized within Rhinella, the monophyly of some of them have been rejected in previous phylogenetic analyses, and many species remain unassigned to these poorly defined groups. Additionally, the identity and taxonomy of several species are problematic and hinder the specific recognition and description of undescribed taxa. In this work, we first perform phylogenetic analyses of separate mitochondrial and nuclear datasets to test the possible occurrence of hybridiza-tion and/or genetic introgression in the genus. The comparative analysis of both datasets revealed unidirectional mitochondrial introgressions of an unknown parental species into R . horribilis (“ghost introgression”) and of R . dorbignyi into R . bernardoi; therefore, the mitochondrial and nuclear data-sets of these species were considered separately in subsequent analyses. We performed total-evidence phylogenetic analyses that included revised molecular (four mitochondrial and five nuclear genes) and phenotypic (90 characters) datasets for 83 nominal species of Rhinella, plus several undescribed and problematic species and multiple outgroups. Results demonstrate that Rhinella was nonmono-phyletic due to the position of R . ceratophrys, which was recovered as the sister taxon of Rhaebo nasicus with strong support. Among our outgroups, the strongly supported Anaxyrus + Incilius is the sister clade of all other species of Rhinella. Once R . ceratophrys is excluded, the genus Rhinellais monophyletic, well supported, and composed of two major clades. One of these is moderately supported and includes species of the former R . spinulosa Group (including R . gallardoi); the mono-phyletic R . granulosa, R . crucifer, and R . marina Groups; and a clade composed of the mitochondrial sequences of R . horribilis. The other major clade is strongly supported and composed of all the spe-cies from the non-monophyletic R . veraguensis and R . margaritifera Groups, the former R . acrolophaGroup, and R . sternosignata. Consistent with these results, we define eight species groups of Rhinella that are mostly diagnosed by phenotypic synapomorphies in addition to a combination of morpho-logical character states. Rhinella sternosignata is the only species that remains unassigned to any group. We also synonymize nine species, treat three former subspecies as full species, and suggest that 15 lineages represent putative undescribed species. Lastly, we discuss the apparently frequent occurrence of hybridization, deep mitochondrial divergence, and “ghost introgression”; the incomplete phenotypic evidence (including putative character systems that could be used for future phy-logenetic analyses); and the validity of the known fossil record of Rhinella as a source of calibration points for divergence dating analyses.Peer reviewe

    Long-term thermal sensitivity of Earth’s tropical forests

    Get PDF
    The sensitivity of tropical forest carbon to climate is a key uncertainty in predicting global climate change. Although short-term drying and warming are known to affect forests, it is unknown if such effects translate into long-term responses. Here, we analyze 590 permanent plots measured across the tropics to derive the equilibrium climate controls on forest carbon. Maximum temperature is the most important predictor of aboveground biomass (−9.1 megagrams of carbon per hectare per degree Celsius), primarily by reducing woody productivity, and has a greater impact per °C in the hottest forests (>32.2°C). Our results nevertheless reveal greater thermal resilience than observations of short-term variation imply. To realize the long-term climate adaptation potential of tropical forests requires both protecting them and stabilizing Earth’s climate

    Evolution in Rhinella (Anura: Bufonidae)

    Get PDF
    155 pages : illustrations (some color) ; 26 cm.True toads of the genus Rhinella are among the most common and diverse group of Neotropical anurans. These toads are widely distributed throughout South America, inhabiting a great diversity of environments and ecoregions. Currently, however, the genus is defined solely on the basis of molecular characters, and it lacks a proper diagnosis. Although some phenetic species groups have traditionally been recognized within Rhinella, the monophyly of some of them have been rejected in previous phylogenetic analyses, and many species remain unassigned to these poorly defined groups. Additionally, the identity and taxonomy of several species are problematic and hinder the specific recognition and description of undescribed taxa. In this work, we first perform phylogenetic analyses of separate mitochondrial and nuclear datasets to test the possible occurrence of hybridization and/or genetic introgression in the genus. The comparative analysis of both datasets revealed unidirectional mitochondrial introgressions of an unknown parental species into R. horribilis ("ghost introgression") and of R. dorbignyi into R. bernardoi; therefore, the mitochondrial and nuclear datasets of these species were considered separately in subsequent analyses. We performed total-evidence phylogenetic analyses that included revised molecular (four mitochondrial and five nuclear genes) and phenotypic (90 characters) datasets for 83 nominal species of Rhinella, plus several undescribed and problematic species and multiple outgroups. Results demonstrate that Rhinella was nonmonophyletic due to the position of R. ceratophrys, which was recovered as the sister taxon of Rhaebo nasicus with strong support. Among our outgroups, the strongly supported Anaxyrus + Incilius is the sister clade of all other species of Rhinella. Once R. ceratophrys is excluded, the genus Rhinella is monophyletic, well supported, and composed of two major clades. One of these is moderately supported and includes species of the former R. spinulosa Group (including R. gallardoi); the monophyletic R. granulosa, R. crucifer, and R. marina Groups; and a clade composed of the mitochondrial sequences of R. horribilis. The other major clade is strongly supported and composed of all the species from the non-monophyletic R. veraguensis and R. margaritifera Groups, the former R. acrolopha Group, and R. sternosignata. Consistent with these results, we define eight species groups of Rhinella that are mostly diagnosed by phenotypic synapomorphies in addition to a combination of morphological character states. Rhinella sternosignata is the only species that remains unassigned to any group. We also synonymize nine species, treat three former subspecies as full species, and suggest that 15 lineages represent putative undescribed species. Lastly, we discuss the apparently frequent occurrence of hybridization, deep mitochondrial divergence, and "ghost introgression"; the incomplete phenotypic evidence (including putative character systems that could be used for future phylogenetic analyses); and the validity of the known fossil record of Rhinella as a source of calibration points for divergence dating analyses

    Water table depth modulates productivity and biomass across Amazonian forests

    No full text
    Aim: Water availability is the major driver of tropical forest structure and dynamics. Most research has focused on the impacts of climatic water availability, whereas remarkably little is known about the influence of water table depth and excess soil water on forest processes. Nevertheless, given that plants take up water from the soil, the impacts of climatic water supply on plants are likely to be modulated by soil water conditions. Location: Lowland Amazonian forests. Time period: 1971–2019. Methods: We used 344 long-term inventory plots distributed across Amazonia to analyse the effects of long-term climatic and edaphic water supply on forest functioning. We modelled forest structure and dynamics as a function of climatic, soil-water and edaphic properties. Results: Water supplied by both precipitation and groundwater affects forest structure and dynamics, but in different ways. Forests with a shallow water table (depth <5 m) had 18% less above-ground woody productivity and 23% less biomass stock than forests with a deep water table. Forests in drier climates (maximum cumulative water deficit < −160 mm) had 21% less productivity and 24% less biomass than those in wetter climates. Productivity was affected by the interaction between climatic water deficit and water table depth. On average, in drier climates the forests with a shallow water table had lower productivity than those with a deep water table, with this difference decreasing within wet climates, where lower productivity was confined to a very shallow water table. Main conclusions: We show that the two extremes of water availability (excess and deficit) both reduce productivity in Amazon upland (terra-firme) forests. Biomass and productivity across Amazonia respond not simply to regional climate, but rather to its interaction with water table conditions, exhibiting high local differentiation. Our study disentangles the relative contribution of those factors, helping to improve understanding of the functioning of tropical ecosystems and how they are likely to respond to climate change

    Water table depth modulates productivity and biomass across Amazonian forests

    Get PDF
    International audienceAim: Water availability is the major driver of tropical forest structure and dynamics. Most research has focused on the impacts of climatic water availability, whereas remarkably little is known about the influence of water table depth and excess soil water on forest processes. Nevertheless, given that plants take up water from the soil, the impacts of climatic water supply on plants are likely to be modulated by soil water conditions. Location: Lowland Amazonian forests. Time period: 1971–2019. Methods: We used 344 long-term inventory plots distributed across Amazonia to analyse the effects of long-term climatic and edaphic water supply on forest functioning. We modelled forest structure and dynamics as a function of climatic, soil-water and edaphic properties. Results: Water supplied by both precipitation and groundwater affects forest structure and dynamics, but in different ways. Forests with a shallow water table (depth <5 m) had 18% less above-ground woody productivity and 23% less biomass stock than forests with a deep water table. Forests in drier climates (maximum cumulative water deficit < −160 mm) had 21% less productivity and 24% less biomass than those in wetter climates. Productivity was affected by the interaction between climatic water deficit and water table depth. On average, in drier climates the forests with a shallow water table had lower productivity than those with a deep water table, with this difference decreasing within wet climates, where lower productivity was confined to a very shallow water table. Main conclusions: We show that the two extremes of water availability (excess and deficit) both reduce productivity in Amazon upland (terra-firme) forests. Biomass and productivity across Amazonia respond not simply to regional climate, but rather to its interaction with water table conditions, exhibiting high local differentiation. Our study disentangles the relative contribution of those factors, helping to improve understanding of the functioning of tropical ecosystems and how they are likely to respond to climate change

    Long-term thermal sensitivity of Earth’s tropical forests

    No full text

    Data from Sullivan et al. (2020) Long-term thermal sensitivity of Earth’s tropical forests. Science. DOI: 10.1126/science.aaw7578.

    No full text
    ABSTRACT: The sensitivity of tropical forest carbon to climate is a key uncertainty in predicting global climate change. Although short-term drying and warming are known to affect forests, it is unknown if such effects translate into long-term responses. Here, we analyze 590 permanent plots measured across the tropics to derive the equilibrium climate controls on forest carbon. Maximum temperature is the most important predictor of aboveground biomass (−9.1 megagrams of carbon per hectare per degree Celsius), primarily by reducing woody productivity, and has a greater rate of decline in the hottest forests (>32.2°C). Our results nevertheless reveal greater thermal resilience than observations of short-term variation imply. To realize the long-term climate adaptation potential of tropical forests requires both protecting them and stabilizing Earth’s climate
    corecore