12 research outputs found

    Cyanobacterial lipopolysaccharides and human health – a review

    Get PDF
    Cyanobacterial lipopolysaccharide/s (LPS) are frequently cited in the cyanobacteria literature as toxins responsible for a variety of heath effects in humans, from skin rashes to gastrointestinal, respiratory and allergic reactions. The attribution of toxic properties to cyanobacterial LPS dates from the 1970s, when it was thought that lipid A, the toxic moiety of LPS, was structurally and functionally conserved across all Gram-negative bacteria. However, more recent research has shown that this is not the case, and lipid A structures are now known to be very different, expressing properties ranging from LPS agonists, through weak endotoxicity to LPS antagonists. Although cyanobacterial LPS is widely cited as a putative toxin, most of the small number of formal research reports describe cyanobacterial LPS as weakly toxic compared to LPS from the Enterobacteriaceae. We systematically reviewed the literature on cyanobacterial LPS, and also examined the much lager body of literature relating to heterotrophic bacterial LPS and the atypical lipid A structures of some photosynthetic bacteria. While the literature on the biological activity of heterotrophic bacterial LPS is overwhelmingly large and therefore difficult to review for the purposes of exclusion, we were unable to find a convincing body of evidence to suggest that heterotrophic bacterial LPS, in the absence of other virulence factors, is responsible for acute gastrointestinal, dermatological or allergic reactions via natural exposure routes in humans. There is a danger that initial speculation about cyanobacterial LPS may evolve into orthodoxy without basis in research findings. No cyanobacterial lipid A structures have been described and published to date, so a recommendation is made that cyanobacteriologists should not continue to attribute such a diverse range of clinical symptoms to cyanobacterial LPS without research confirmation

    Convection in GATE

    No full text

    Grazing and ecosystem service delivery in global drylands

    No full text
    Grazing represents the most extensive use of land worldwide. Yet its impacts on ecosystem services remain uncertain because pervasive interactions between grazing pressure, climate, soil properties, and biodiversity may occur but have never been addressed simultaneously. Using a standardized survey at 98 sites across six continents, we show that interactions between grazing pressure, climate, soil, and biodiversity are critical to explain the delivery of fundamental ecosystem services across drylands worldwide. Increasing grazing pressure reduced ecosystem service delivery in warmer and species-poor drylands, whereas positive effects of grazing were observed in colder and species-rich areas. Considering interactions between grazing and local abiotic and biotic factors is key for understanding the fate of dryland ecosystems under climate change and increasing human pressure

    Grazing and ecosystem service delivery in global drylands

    Get PDF
    Grazing represents the most extensive use of land worldwide. Yet its impacts on ecosystem services remain uncertain because pervasive interactions between grazing pressure, climate, soil properties, and biodiversity may occur but have never been addressed simultaneously. Using a standardized survey at 98 sites across six continents, we show that interactions between grazing pressure, climate, soil, and biodiversity are critical to explain the delivery of fundamental ecosystem services across drylands worldwide. Increasing grazing pressure reduced ecosystem service delivery in warmer and species-poor drylands, whereas positive effects of grazing were observed in colder and species-rich areas. Considering interactions between grazing and local abiotic and biotic factors is key for understanding the fate of dryland ecosystems under climate change and increasing human pressure

    Data and R code from "Grazing and ecosystem service delivery in global drylands"

    No full text
    There are two zip files with the data and R scripts used in the article "Grazing and ecosystem service delivery in global drylands". The file "Main_Data_code.zip" contains the data and R code used in the main analyses of the paper. These data also include the location and major environmental characteristics of the plots surveyed. The file "Livestock_data_code.zip" contains the data and R code used in the characterization and validation of grazing pressure levels (see Methods). Readme and metadata files including a description of the files, variables and units are provided. All the methodological details can be found in the article. Additional authors from the BIODESERT consortium not included in the author list (we reached the maximum number of authors allowed by figshare) include:  Víctor Rolo, Juan G. Rubalcaba, Jan C. Ruppert, Ayman Salah, Max A. Schuchardt, Sedona Spann, Ilan Stavi, Colton R. A.Stephens, Anthony M. Swemmer, Alberto L. Teixido, Andrew D. Thomas, Heather L. Throop, Katja Tielbörger, Samantha Travers, James Val, Orsolya Valkó, Liesbeth van den Brink, Sergio Velasco Ayuso, Frederike Velbert, Wanyoike Wamiti, Deli Wang, Lixin Wang, Glenda M. Wardle, Laura Yahdjian, Eli Zaady, Yuanming Zhang and Xiaobing Zhou </p

    An Assessment of Progress in Research on International Advertising

    No full text

    Archived - General Information (DO NOT USE)

    No full text
    DO NOT USE - The goal of this component was to document the data collection process of the Silent Cities Dataset. This component is just left for archive

    Containment measures

    No full text
    OBSOLETE (project finished) - Description of containment measures during COVID'19 lockdown, in the context of SIlent Cities project. Please request access to Silent Cities if neede
    corecore