521 research outputs found

    KEYNOTE ADDRESS: Climate Change: From Global to New York Scale

    Get PDF
    This talk is concerned with the science and impacts of climate change from global to New York scales. It will provide an assessment of how the climate has changed over the past Century based on a purely observational perspective. The scientific basis for anthroprogenic climate change will be explained and discussed including a description of the “greenhouse effect” and why it is important for life on this planet. We will briefly discuss global and local consequences of a warmer climate and what we need to be prepared for going forward in the coming decades

    Sanford, DeBary Hall and the New South Movement in Central Florida

    Get PDF
    The so-called New South movement coincided with national industrialization in the Gilded Age and Progressive Era. In the New South, modernization focused on the development of small diversified farms, mills that processed cotton and tobacco, and small cities that connected the countryside to national markets and provided area residents with mass produced goods. Florida\u27s experience and more specifically development around Lake Monroe in Central Florida complicates and expands our understanding of the New South. Located in what was considered a frontier area, Sanford on the south shore of the lake and DeBary Hall on the north shore illustrate the development of Central Florida in the context of the New South movement. Finally, an analysis of two museums, Sanford Museum and DeBary Hall House Museum, assesses the community understanding of the role of New South in the development of the area and offers suggestions for writing the New South into the story

    West African storm tracks and their relationship to Atlantic tropical cyclones

    Get PDF
    The automatic tracking technique used by Thorncroft and Hodges (2001) has been used to identify coherent vorticity structures at 850hPa over West Africa and the tropical Atlantic in the ECMWF 40-year reanalysis. The presence of two dominant source regions, north and south of 15ÂșN over West Africa, for storm tracks over the Atlantic was confirmed. Results show that the southern storm track provides most of the storms that reach the main development region where most tropical cyclones develop. There exists marked seasonal variability in location and intensity of the storms leaving the West African coast, which may influence the likelihood of downstream intensification and longevity. There exists considerable year-to-year variability in the number of West African storm tracks, both in numbers over the land and continuing out over the tropical Atlantic Ocean. While the low-frequency variability is well correlated with Atlantic tropical cyclone activity, West African rainfall and SSTs, the interannual variability is found to be uncorrelated with these. In contrast, variance of the 2-6-day-filtered meridional wind, which provides a synoptic-scale measure of African Easterly Wave activity, shows a significant, positive correlation with tropical cyclone activity at interannual timescales

    The vertical cloud structure of the West African monsoon: a 4 year climatology using CloudSat and CALIPSO

    Get PDF
    The West African summer monsoon (WAM) is an important driver of the global climate and locally provides most of the annual rainfall. A solid climatological knowledge of the complex vertical cloud structure is invaluable to forecasters and modelers to improve the understanding of the WAM. In this paper, 4 years of data from the CloudSat profiling radar and CALIPSO are used to create a composite zonal mean vertical cloud and precipitation structure for the WAM. For the first time, the near-coincident vertical radar and lidar profiles allow for the identification of individual cloud types from optically thin cirrus and shallow cumulus to congestus and deep convection. A clear diurnal signal in zonal mean cloud structure is observed for the WAM, with deep convective activity enhanced at night producing extensive anvil and cirrus, while daytime observations show more shallow cloud and congestus. A layer of altocumulus is frequently observed over the Sahara at night and day, extending southward to the coastline, and the majority of this cloud is shown to contain supercooled liquid in the top. The occurrence of deep convective systems and congestus in relation to the position of the African easterly jet is studied, but only the daytime cumulonimbus distribution indicates some influence of the jet position

    The counter-propagating Rossby-wave perspective on baroclinic instability. Part IV: Nonlinear life cycles

    Get PDF
    Pairs of counter-propagating Rossby waves (CRWs) can be used to describe baroclinic instability in linearized primitive-equation dynamics, employing simple propagation and interaction mechanisms at only two locations in the meridional plane—the CRW ‘home-bases’. Here, it is shown how some CRW properties are remarkably robust as a growing baroclinic wave develops nonlinearly. For example, the phase difference between upper-level and lower-level waves in potential-vorticity contours, defined initially at the home-bases of the CRWs, remains almost constant throughout baroclinic wave life cycles, despite the occurrence of frontogenesis and Rossby-wave breaking. As the lower wave saturates nonlinearly the whole baroclinic wave changes phase speed from that of the normal mode to that of the self-induced phase speed of the upper CRW. On zonal jets without surface meridional shear, this must always act to slow the baroclinic wave. The direction of wave breaking when a basic state has surface meridional shear can be anticipated because the displacement structures of CRWs tend to be coherent along surfaces of constant basic-state angular velocity, U. This results in up-gradient horizontal momentum fluxes for baroclinically growing disturbances. The momentum flux acts to shift the jet meridionally in the direction of the increasing surface U, so that the upper CRW breaks in the same direction as occurred at low level

    Potential vorticity in warm conveyor belt outflow

    Get PDF
    Warm conveyor belts (WCBs) are the main ascending air masses within extratropical cyclones. They often exhibit strong condensation and precipitation, associated with ascent on large scales or embedded convection. Most of the air outflows into the upper troposphere as part of a ridge. Such ridges are an integral part of Rossby waves propagating along the tropopause and are identified with a negative potential vorticity (PV) anomaly and associated anticyclonic circulation. It has been argued that diabatic modification of PV in WCBs has an important influence on the extent of the ridge, propagation of Rossby waves and weather impacts downstream. Following the coherent ensemble of trajectories defining a WCB, PV is expected to increase with time while below the level of maximum latent heating and then decrease as trajectories ascend above the heating maximum. In models, it is found that the net change is approximately zero, so that the average PV of the WCB outflow is almost equal to the PV of its inflow. Here, the conditions necessary for this evolution are explored analytically using constraints arising from the conservation of circulation. It is argued that the net PV change is insensitive to the details of diabatic processes and the PV maximum midway along a WCB depends primarily on the net diabatic transport of mass from the inflow to the outflow layer. The main effect of diabatic processes within a WCB is to raise the isentropic level of the outflow, rather than to modify PV

    The Saharan heat low and moisture transport pathways in the central Sahara-multiaircraft observations and Africa-LAM evaluation

    Get PDF
    We present a characterization of the Saharan heat low (SHL) based on dropsonde observations made on 22 June 2011 by two simultaneously flying aircraft during the Fennec project. The observations are used to identify moisture transport pathways and to validate the UK Met Office limited area model for northern Africa (Africa-LAM). The observations capture the SHL, harmattan, and monsoon surge. The SHL has a northeast-southwest orientated elongated shape centered over northern Mauritania. The SHL core is associated with a 950 hPa temperature minimum (36.4°C) in the morning caused by the monsoon surge and a maximum (42.6°C) in the afternoon. The monsoon surge east of the SHL core splits into two transport pathways: (a) curving around the SHL core in the north, especially pronounced in a morning near-surface layer, and (b) northeastward transport within the ~2km deep monsoon surge (afternoon observations only). In the morning the model forecasts the harmattan, monsoon surge, and the SHL geographic location and northeast-southwest orientation well but the model represents the SHL flatter and more spatially extended and overestimates the convective boundary layer (CBL) by up to ~0.3 km. The simulated afternoon SHL location appears shifted westward by up to ~1°. The model overestimates the shallow afternoon monsoon surge CBL depth of ~1.8km by >2kmresulting in southwestward transport of vertically mixed moisture above ~2.5km contrasting observed northeastward-only transport at lower levels. This moisture distribution model error is likely to have consequences for simulations of Saharan thermodynamics and dust emissions caused by convection-driven cold pools

    The basic ingredients of the North Atlantic storm track. Part I: land-sea contrast and orography

    Get PDF
    Understanding and predicting changes in storm tracks over longer time scales is a challenging problem, particularly in the North Atlantic. This is due in part to the complex range of forcings (land–sea contrast, orography, sea surface temperatures, etc.) that combine to produce the structure of the storm track. The impact of land–sea contrast and midlatitude orography on the North Atlantic storm track is investigated through a hierarchy of GCM simulations using idealized and “semirealistic” boundary conditions in a high-resolution version of the Hadley Centre atmosphere model (HadAM3). This framework captures the large-scale essence of features such as the North and South American continents, Eurasia, and the Rocky Mountains, enabling the results to be applied more directly to realistic modeling situations than was possible with previous idealized studies. The physical processes by which the forcing mechanisms impact the large-scale flow and the midlatitude storm tracks are discussed. The characteristics of the North American continent are found to be very important in generating the structure of the North Atlantic storm track. In particular, the southwest–northeast tilt in the upper tropospheric jet produced by southward deflection of the westerly flow incident on the Rocky Mountains leads to enhanced storm development along an axis close to that of the continent’s eastern coastline. The approximately triangular shape of North America also enables a cold pool of air to develop in the northeast, intensifying the surface temperature contrast across the eastern coastline, consistent with further enhancements of baroclinicity and storm growth along the same axis

    A novel TP53 splicing mutation in a Li-Fraumeni syndrome family: a patient with Wilms' tumour is not a mutation carrier.

    Get PDF
    We report a Li-Fraumeni syndrome family in which we have detected a splice acceptor mutation in intron 3 of TP53. The mutation affects one of the invariant residues at the splice acceptor site, as a result of which two aberrant transcripts are produced. A child with Wilms' tumour aged 3 years in this family was shown not to be a mutation carrier
    • 

    corecore