89 research outputs found

    Cytoprotective pathways in the vascular endothelium. Do they represent a viable therapeutic target?

    Get PDF
    The vascular endothelium is a critical interface, which separates the organs from the blood and its contents. The endothelium has a wide variety of functions and maintenance of endothelial homeostasis is a multi-dimensional active process, disruption of which has potentially deleterious consequences if not reversed. Vascular injury predisposes to endothelial apoptosis, dysfunction and development of atherosclerosis. Endothelial dysfunction is an end-point, a central feature of which is increased ROS generation, a reduction in endothelial nitric oxide synthase and increased nitric oxide consumption. A dysfunctional endothelium is a common feature of diseases including rheumatoid arthritis, systemic lupus erythematosus, diabetes mellitus and chronic renal impairment. The endothelium is endowed with a variety of constitutive and inducible mechanisms that act to minimise injury and facilitate repair. Endothelial cytoprotection can be enhanced by exogenous factors such as vascular endothelial growth factor, prostacyclin and laminar shear stress. Target genes include endothelial nitric oxide synthase, heme oxygenase-1, A20 and anti-apoptotic members of the B cell lymphoma protein-2 family. In light of the importance of endothelial function, and the link between its disruption and the risk of atherothrombosis, interest has focused on therapeutic conditioning and reversal of endothelial dysfunction. A detailed understanding of cytoprotective signalling pathways, their regulation and target genes is now required to identify novel therapeutic targets. The ultimate aim is to add vasculoprotection to current therapeutic strategies for systemic inflammatory diseases, in an attempt to reduce vascular injury and prevent or retard atherogenesis

    Vitamin D improves endothelial dysfunction and restores myeloid angiogenic cell function via reduced CXCL-10 expression in systemic lupus erythematosus.

    Get PDF
    Patients with systemic lupus erythematosus (SLE) have accelerated cardiovascular disease and dysfunctional endothelial repair mechanisms. Myeloid angiogenic cells (MACs), derived from circulating monocytes, augment vascular repair by paracrine secretion of pro-angiogenic factors. We observed that SLE MACs are dysfunctional and secrete pro-inflammatory cytokines. We also found that the vitamin D receptor was transiently expressed during MAC differentiation and that in vitro, calcitriol increased differentiation of monocytes into MACs in both SLE and in a model using the prototypic SLE cytokine, interferon-alpha. The active form of vitamin D (calcitriol) restored the SLE MAC phenotype towards that of healthy subjects with reduced IL-6 secretion, and normalised surface marker expression. Calcitriol also augmented the angiogenic capacity of MACs via the down-regulation of CXCL-10. In SLE patients treated with cholecalciferol for 12 weeks, the improvement in endothelial function correlated with increase in serum 25(OH)D concentrations independently of disease activity. We also show that MACs were able to positively modulate eNOS expression in human endothelial cells in vitro, an effect further enhanced by calcitriol treatment of SLE MACs. The results demonstrate that vitamin D can positively modify endothelial repair mechanisms and thus endothelial function in a population with significant cardiovascular risk

    Genetics of immunoglobulin-A vasculitis (Henoch-Schönlein purpura): An updated review

    Get PDF
    Immunoglobulin-A vasculitis (IgAV) is classically a childhood small-sized blood vessel vasculitis with predominant involvement of the skin. Gastrointestinal and joint manifestations are common in patients diagnosed with this condition. Nephritis, which is more severe in adults, constitutes the most feared complication of this vasculitis. The molecular bases underlying the origin of IgAV have not been completely elucidated. Nevertheless, several pieces of evidence support the claim that genes play a crucial role in the pathogenesis of this disease. The human leukocyte antigen (HLA) region is, until now, the main genetic factor associated with IgAV pathogenesis. Besides a strong association with HLA class II alleles, specifically HLA-DRB1 alleles, HLA class I alleles also seem to influence on the predisposition of this disease. Other gene polymorphisms located outside the HLA region, including those coding cytokines, chemokines, adhesion molecules as well as those related to T-cells, aberrant glycosylation of IgA1, nitric oxide production, neoangiogenesis, renin-angiotensin system and lipid, Pyrin and homocysteine metabolism, may be implicated not only in the predisposition to IgAV but also in its severity. An update of the current knowledge of the genetic component associated with the pathogenesis of IgAV is detailed in this review.Acknowledgements: RL-Mis supported by the Miguel Servet I programme of the Spanish Ministry of Economy and Competitiveness through the grant CP16/ 00033. FG is recipient of a Sara Borrell postdoctoral fellowship from the “Instituto Carlos III de Salud” at the Spanish Ministry of Health (Spain) (CD15/00095). SR-M is supported by funds from the RETICS Program (RIER) (RD16/0012/0009). FDC is supported by the Ramón y Cajal programme of the Spanish Ministry of Economy and Competitiveness through the grant RYC-2014-16458

    Secretion of mast cell inflammatory mediators is enhanced by CADM1-dependent adhesion to sensory neurons

    Get PDF
    Neuroimmune interactions are important in the pathophysiology of many chronic inflammatory diseases, particularly those associated with alterations in sensory processing and pain. Mast cells and sensory neuron nerve endings are found in areas of the body exposed to the external environment; both are specialized to sense potential damage by injury or pathogens and signal to the immune system and nervous system respectively, to elicit protective responses. Cell adhesion molecule 1 (CADM1), also known as SynCAM1, has previously been identified as an adhesion molecule which may couple mast cells to sensory neurons however, whether this molecule exerts a functional as well as structural role in neuroimmune cross-talk is unknown. Here we show, using a newly developed in vitro co-culture system consisting of murine bone marrow derived mast cells (BMMC) and adult sensory neurons isolated from dorsal root ganglions (DRG), that CADM1 is expressed in mast cells and adult sensory neurons and mediates strong adhesion between the two cell types. Non-neuronal cells in the DRG cultures did not express CADM1, and mast cells did not adhere to them. The interaction of BMMCs with sensory neurons was found to induce mast cell degranulation and IL-6 secretion and to enhance responses to antigen stimulation and activation of FcεRI receptors. Secretion of TNFα in contrast was not affected, nor was secretion evoked by compound 48/80. Co-cultures of BMMCs with HEK 293 cells, which also express CADM1, while also leading to adhesion did not replicate the effects of sensory neurons on mast cells, indicative of a neuron-specific interaction. Application of a CADM1 blocking peptide or knockdown of CADM1 in BMMCs significantly decreased BMMC attachment to sensory neurites and abolished the enhanced secretory responses of mast cells. In conclusion, CADM1 is necessary and sufficient to drive mast cell-sensory neuron adhesion and promote the development of a microenvironment in which neurons enhance mast cell responsiveness to antigen; this interaction could explain why the incidence of painful neuroinflammatory disorders such as irritable bowel syndrome (IBS) are increased in atopic patients

    SLE and metabolic syndrome

    No full text

    Association of the A561C E-selectin polymorphism with systemic lupus erythematosus in 2 independent populations

    No full text
    Objective. E-selectin is expressed on cytokine stimulated endothelial cells and plays an important role in leukocyte-endothelium interactions and inflammatory cell recruitment. The gene for E-selectin is located at chromosome 1q23-25 within the linkage area for systemic lupus erythematosus (SLE). The best characterized polymorphism in E-selectin molecule is A561C. which codes for Ser128Arg. We studied the prevalence of the A561C E-selectin gene polymorphism in patients with SLE and controls from 3 different ethnic populations

    Dietary Adherence of Saudi Males to the Saudi Dietary Guidelines and Its Relation to Cardiovascular Diseases: A Preliminary Cross-Sectional Study

    No full text
    Cardiovascular disease (CVD) is a major public health problem in Saudi Arabia. Dietary intake plays a major role in CVD incidence; however, the dietary intake status in Saudi nationals with CVD is unknown. We aimed to investigate whether the dietary patterns of Saudi males, using the Saudi dietary guidelines adherence score, in parallel with the measurement of a selective number of cardiovascular disease-related biomarkers, are contributing factors to CVD risk. Demographics, dietary adherence score, and blood biomarker levels were collected for 40 CVD patients and forty non-CVD patients. Fasting blood glucose (p = 0.006) and high-density lipoprotein levels (p = 0.03) were significantly higher in CVD patients. The adherence score to the Saudi dietary guidelines was not significantly different between the CVD and non-CVD patients; however, the specific adherence scores of fruit (p = 0.02), olive oil (p = 0.01), and non-alcoholic beer (p = 0.02) were significantly higher in the non-CVD patients. The differences in CVD family history (p = 0.02) and adherence scores to specific groups/foods between the CVD and non-CVD patients may contribute to CVD risk in Saudi males. However, as the sample size of this study was small, further research is required to validate these findings
    corecore