8 research outputs found

    Fluconazole-loaded solid lipid nanoparticles topical gel for treatment of pityriasis versicolor: formulation and clinical study

    No full text
    Solid lipid nanoparticles (SLNs) are very potential formulations for topical delivery of antifungal drugs. Hence, the purpose of this research was to formulate the well-known antifungal agent Fluconazole (FLZ)-loaded SLNs topical gel to improve its efficiency for treatment of Pityriasis Versicolor (PV). FLZ-SLNs were prepared by modified high shear homogenization and ultrasonication method using different concentration of solid lipid (Compritol 888 ATO, Precirol ATO5) and surfactant (Cremophor RH40, Poloxamer 407). The physicochemical properties and the in vitro release study for all FLZ-SLNs were investigated. Furthermore, the optimized FLZ-SLN formula was incorporated into gel using Carpobol 934. A randomized controlled clinical trial (RCT) of potential batches was carried out on 30 well diagnosed PV patients comparing to market product Candistan® 1% cream. Follow up was done for 4 weeks by clinical and KOH examinations. The results showed that FlZ-SLNs were almost spherical shape having colloidal sizes with no aggregation. The drug entrapment efficiency ranged from 55.49% to 83.04%. The zeta potential values lie between −21 and −33 mV presenting good stability. FLZ showed prolonged in vitro release from SLNs dispersion and its Carbapol gel following Higuchi order equation. Clinical studies registered significant improvement (p < .05) in therapeutic response (1.4-fold; healing%, 4-fold; complete eradication) in terms of clinical cure and mycological cure rate from PV against marketed cream. Findings of the study suggest that the developed FLZ loaded SLNs topical gels have superior significant fast therapeutic index in treatment of PV over commercially available Candistan® cream

    Development and Optimization of Erythromycin Loaded Transethosomes Cinnamon Oil Based Emulgel for Antimicrobial Efficiency

    No full text
    Erythromycin (EM) is a macrolide antibiotic that is frequently used to treat skin bacterial infections. It has a short half-life (1–1.5 h), instability in stomach pH, and a low oral bioavailability. These foregoing factors limit its oral application; therefore, the development of topical formulations loaded with erythromycin is an essential point to maximize the drug’s concentration at the skin. Accordingly, the current study’s goal was to boost the antimicrobial activity of EM by utilizing the advantages of natural oils such as cinnamon oil. Erythromycin-loaded transethosomes (EM-TE) were generated and optimized using a Box–Behnken design employing, phospholipid concentration (A), surfactant concentration (B), and ethanol content (C) as independent variables. Their effects on entrapment efficiency, EE, (Y1) and the total amount of erythromycin that penetrated the skin after 6 h, Q6h (Y2), were assessed. The optimized transethosome showed a particle size of 256.2 nm, EE of 67.96 ± 0.59%, and Q6h of 665.96 ± 5.87 (µg/cm2) after 6 h. The TEM analysis revealed that, the vesicles are well-known packed structures with a spherical shape. The optimized transethosomes formulation was further transformed into a cinnamon oil-based emulgel system using HPMC as a gelling agent. The generated EM-TE-emulgel was characterized by its physical features, in vitro, ex vivo studies, and antimicrobial activities. The formulation showed sufficient characteristics for effective topical application, and demonstrated a great stability. Additionally, EM-TE-Emulgel had the highest transdermal flux (120.19 μg/cm2·h), and showed considerably (p < 0.05) greater antimicrobial activity, than EM-TE-gel and placebo TE-Emulgel. The action of EM was subsequently augmented with cinnamon oil, which eventually showed a notable effect against bacterial growth. Finally, these results demonstrate that the transethosomes-loaded cinnamon oil-based emulgel is an alternative way to deliver erythromycin for the treatment of topical bacterial infections

    New Paradigms in the Treatment of Skin Infections: Lipid Nanocarriers to the Rescue

    No full text
    Lipid nanocarriers can be an effective drug delivery system for the treatment of skin infections by overcoming the pitfalls associated with conventional topical formulations and offer various advantages such as improved skin permeability, targeted delivery, minimal side effects, increased solubility and bioavailability. The major hurdle in current scenario is antimicrobial resistance which has led to treatment failure and high mortality. Lipid nanocarriers, in this context can be instrumental in the successful eradication of drug-resistant strains in the skin by fusing with cell membrane of infectious microbes and providing an intimate contact and delivering the anti-infective agent directly to the target site. Various lipid-based carriers include liposomes, transferosomes, ethosomes, solid lipid nanoparticles, nanostructured lipid carriers, microemulsion and nanoemulsion. This book chapter summarizes in brief the skin structure and various type of skin infections and then comprehensively describes various lipid nanocarriers and their application in the treatment of cutaneous infections

    Nano-formulations for transdermal drug delivery: A review

    No full text
    corecore