148 research outputs found

    Dopamine D1 receptor stimulation modulates the formation and retrieval of novel object recognition memory: role of the prelimbic cortex

    Get PDF
    Previous studies have shown that dopamine D1 receptor antagonists impair novel object recognition memory but the effects of dopamine D1 receptor stimulation remain to be determined. This study investigated the effects of the selective dopamine D1 receptor agonist SKF81297 on acquisition and retrieval in the novel object recognition task in male Wistar rats. SKF81297 (0.4 and 0.8mg/kg s.c.) given 15 min before the sampling phase impaired novel object recognition evaluated 10 min or 24h later. The same treatments also reduced novel object recognition memory tested 24h after the sampling phase and when given 15min before the choice session. These data indicate that D1 receptor stimulation modulates both the encoding and retrieval of object recognition memory. Microinfusion of SKF81297 (0.025 or 0.05 μg/side) into the prelimbic sub-region of the medial prefrontal cortex (mPFC) in this case 10 min before the sampling phase also impaired novel object recognition memory, suggesting that the mPFC is one important site mediating the effects of D1 receptor stimulation on visual recognition memory

    A Pair of Dopamine Neurons Target the D1-Like Dopamine Receptor DopR in the Central Complex to Promote Ethanol-Stimulated Locomotion in Drosophila

    Get PDF
    Dopamine is a mediator of the stimulant properties of drugs of abuse, including ethanol, in mammals and in the fruit fly Drosophila. The neural substrates for the stimulant actions of ethanol in flies are not known. We show that a subset of dopamine neurons and their targets, through the action of the D1-like dopamine receptor DopR, promote locomotor activation in response to acute ethanol exposure. A bilateral pair of dopaminergic neurons in the fly brain mediates the enhanced locomotor activity induced by ethanol exposure, and promotes locomotion when directly activated. These neurons project to the central complex ellipsoid body, a structure implicated in regulating motor behaviors. Ellipsoid body neurons are required for ethanol-induced locomotor activity and they express DopR. Elimination of DopR blunts the locomotor activating effects of ethanol, and this behavior can be restored by selective expression of DopR in the ellipsoid body. These data tie the activity of defined dopamine neurons to D1-like DopR-expressing neurons to form a neural circuit that governs acute responding to ethanol

    Effects of dopamine D1 modulation of the anterior cingulate cortex in a fear conditioning procedure

    Get PDF
    The anterior cingulate cortex (AC) component of the medial prefrontal cortex (mPFC) has been implicated in attention and working memory as measured by trace conditioning. Since dopamine (DA) is a key modulator of mPFC function, the present study evaluated the role of DA receptor agents in rat AC, using trace fear conditioning. A conditioned stimulus (CS, noise) was followed by an unconditioned stimulus (US, shock) with or without a 10s trace interval interposed between these events in a between-subjects design. Conditioned suppression of drinking was assessed in response to presentation of the CS or an experimental background stimulus (flashing lights, previously presented for the duration of the conditioning session). The selective D1 agonist SKF81297 (0.05 µg/side) or D1 antagonist SCH23390 (0.5 µg/side) was administered by intra-cerebral microinfusion directly into AC. It was predicted that either of these manipulations should be sufficient to impair trace (but not delay) conditioning. Counter to expectation, there was no effect of DA D1 modulation on trace conditioning as measured by suppression to the noise CS. However, rats infused with SKF81297 acquired stronger conditioned suppression to the experimental background stimulus than those infused with SCH23390 or saline. Thus, the DA D1 agonist SKF81297 increased conditioned suppression to the contextual background light stimulus but was otherwise without effect on fear conditioning

    Salsolinol Facilitates Glutamatergic Transmission to Dopamine Neurons in the Posterior Ventral Tegmental Area of Rats

    Get PDF
    Although in vivo evidence indicates that salsolinol, the condensation product of acetaldehyde and dopamine, has properties that may contribute to alcohol abuse, the underlying mechanisms have not been fully elucidated. We have reported previously that salsolinol stimulates dopamine neurons in the posterior ventral tegmental area (p-VTA) partly by reducing inhibitory GABAergic transmission, and that ethanol increases glutamatergic transmission to VTA-dopamine neurons via the activation of dopamine D1 receptors (D1Rs). In this study, we tested the hypothesis that salsolinol stimulates dopamine neurons involving activation of D1Rs. By using whole-cell recordings on p-VTA-dopamine neurons in acute brain slices of rats, we found that salsolinol-induced increase in spike frequency of dopamine neurons was substantially attenuated by DL-2-amino-5-phosphono-valeric acid and 6, 7-dinitroquinoxaline-2, 3-dione, the antagonists of glutamatergic N-Methyl-D-aspartic acid and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Moreover, salsolinol increased the amplitude of evoked excitatory postsynaptic currents (EPSCs) and the frequency but not the amplitude of spontaneous EPSCs. Additionally, SKF83566, a D1R antagonist attenuated the salsolinol-induced facilitation of EPSCs and of spontaneous firing of dopamine neurons. Our data reveal that salsolinol enhances glutamatergic transmission onto dopamine neurons via activation of D1Rs at the glutamatergic afferents in dopamine neurons, which contributes to salsolinol's stimulating effect on p-VTA dopamine neurons. This appears to be a novel mechanism which contributes toward rewarding properties of salsolinol

    Plasticity in D1-Like Receptor Expression Is Associated with Different Components of Cognitive Processes

    Get PDF
    Dopamine D1-like receptors consist of D1 (D1A) and D5 (D1B) receptors and play a key role in working memory. However, their possibly differential contribution to working memory is unclear. We combined a working memory training protocol with a stepwise increase of cognitive subcomponents and real-time RT-PCR analysis of dopamine receptor expression in pigeons to identify molecular changes that accompany training of isolated cognitive subfunctions. In birds, the D1-like receptor family is extended and consists of the D1A, D1B, and D1D receptors. Our data show that D1B receptor plasticity follows a training that includes active mental maintenance of information, whereas D1A and D1D receptor plasticity in addition accompanies learning of stimulus-response associations. Plasticity of D1-like receptors plays no role for processes like response selection and stimulus discrimination. None of the tasks altered D2 receptor expression. Our study shows that different cognitive components of working memory training have distinguishable effects on D1-like receptor expression

    Recurring Ethanol Exposure Induces Disinhibited Courtship in Drosophila

    Get PDF
    Alcohol has a strong causal relationship with sexual arousal and disinhibited sexual behavior in humans; however, the physiological support for this notion is largely lacking and thus a suitable animal model to address this issue is instrumental. We investigated the effect of ethanol on sexual behavior in Drosophila. Wild-type males typically court females but not males; however, upon daily administration of ethanol, they exhibited active intermale courtship, which represents a novel type of behavioral disinhibition. The ethanol-treated males also developed behavioral sensitization, a form of plasticity associated with addiction, since their intermale courtship activity was progressively increased with additional ethanol experience. We identified three components crucial for the ethanol-induced courtship disinhibition: the transcription factor regulating male sex behavior Fruitless, the ABC guanine/tryptophan transporter White and the neuromodulator dopamine. fruitless mutant males normally display conspicuous intermale courtship; however, their courtship activity was not enhanced under ethanol. Likewise, white males showed negligible ethanol-induced intermale courtship, which was not only reinstated but also augmented by transgenic White expression. Moreover, inhibition of dopamine neurotransmission during ethanol exposure dramatically decreased ethanol-induced intermale courtship. Chronic ethanol exposure also affected a male's sexual behavior toward females: it enhanced sexual arousal but reduced sexual performance. These findings provide novel insights into the physiological effects of ethanol on sexual behavior and behavioral plasticity

    Translating advances in the molecular basis of schizophrenia into novel cognitive treatment strategies

    Get PDF
    The presence and severity of cognitive symptoms, including working memory, executive dysfunction and attentional impairment, contributes materially to functional impairment in schizophrenia. Cognitive symptoms have proven resistant to both first- and second-generation antipsychotic drugs. Efforts to develop a consensus set of cognitive domains that are both disrupted in schizophrenia and are amenable to cross-species validation (e.g. the NIMH CNTRICS and RDoC initiatives) are an important step towards standardisation of outcome measures that can used in preclinical testing of new drugs. While causative genetic mutations have not been identified, new technologies have identified novel genes as well as hitherto candidate genes previously implicated in the pathophysiology of schizophrenia and/or mechanisms of antipsychotic efficacy. This review comprises a selective summary of these developments, particularly phenotypic data arising from preclinical genetic models for cognitive dysfunction in schizophrenia, with the aim of indicating potential new directions for pro-cognitive therapeutics

    Insights into the role of the dopamine D1 receptor in brain function: Studies using a gene deletion model

    No full text
    grantor: University of TorontoDopamine receptors are widely expressed throughout the central and peripheral nervous systems and regulate many key functions of the brain. Five dopamine receptors have so far been cloned and classified into two main classes known as D1-like (D1 and D5) and D2-like (D2, D3 and D4) based on similarity in structure, pharmacology and coupling. Primarily because of the lack of receptor subtype-selective ligands, the precise physiological roles of these individual dopamine receptor subtypes remain unclear. The D 1 receptor subtype is highly expressed in the striatum, nucleus accumbens and prefrontal cortex, brain regions shown to modulate many functions ranging from locomotion to reward, cognition and emotion. To study the potential ' in vivo' role of the dopamine D1 receptor in the regulation of specific brain functions and drug induced behaviors, we used mice lacking the functional D1 receptor gene. In these mice the D1 receptor gene was deleted by means of homologous recombination. Based on the behavioral analysis of D1 receptor-deficient mice, we demonstrate that the D1 receptor is an abundant protein that plays a crucial role in mediating higher brain functions including some aspects of cognition (spatial learning and memory), appetitive motivation (operant responding for sucrose), alcohol seeking behavior and locomotor responses to alcohol and amphetamine. In addition, we have defined, for the first time, a role for the D1 receptor in the normal extinction of conditioned fear responses. However, D1 receptor does not appear to be essential for basal locomotor activity, working memory, sweet-taste preference or acquisition and expression of fear responses. These findings have great importance in furthering the understanding of the role of D1 receptors in brain functions.Ph.D
    • …
    corecore