240 research outputs found

    Tumor-derived interleukin-10 as a prognostic factor in stage III patients undergoing adjuvant treatment with an autologous melanoma cell vaccine.

    Get PDF
    OBJECTIVES: Interleukin-10 (IL-10) downregulates T-cell-mediated immune responses. We studied the association between IL-10 production by freshly isolated melanoma cell suspensions in vitro and overall survival in patients undergoing adjuvant treatment with a vaccine prepared from the same autologous melanoma cells modified with a hapten, dinitrophenyl (DNP). METHODS: Forty-four patients with cutaneous melanoma (29 stage III and 15 stage IV) were prospectively evaluated. Tumor cells were extracted from metastatic deposits for production of DNP-modified autologous melanoma cell vaccine. Small aliquots of the melanoma cell suspensions were separated prior to vaccine processing and cultured overnight for IL-10 production. Based on a blind assessment of the distribution of IL-10 levels in the culture supernatants, a cutoff of 200 pg/ml was used to define high versus low IL-10 producers. Cox regression model was used for multivariate analysis. Overall survival was calculated using the Kaplan-Meier method, and survival curves were compared with the log-rank test. RESULTS: Out of 44 patients, 29 were low and 15 were high IL-10 producers. The median OS was significantly worse for high compared with low IL-10 producers (10.5 months vs. 42 months; P = 0.022). In stage III patients, the multivariate hazard ratio for high versus low IL-10 producers was 2.92 (95% CI, 1.04-8.20; P = 0.041). The corresponding hazard ratio in stage IV patients was 0.92 (95% CI, 1.04-8.20; P = 0.888). CONCLUSIONS: High IL-10 production in the tumor microenvironment could be a determinant of clinical outcomes in stage III melanoma patients receiving autologous melanoma cell vaccine

    The role of tumour-derived iNOS in tumour progression and angiogenesis

    Get PDF
    BACKGROUND: Progressive tumour growth is dependent on the development of a functional tumour vasculature and highly regulated by growth factors and cytokines. Nitric oxide (NO) is a free radical, produced both by tumour and host cells, and functions as a signalling molecule downstream of several angiogenic factors. Both pro-and antitumourigenic properties have been attributed to NO. METHODS: The expression of the inducible isoform of NO synthase (iNOS) was knocked down in the C6 glioma cell line using constitutive expression of antisense RNA, and the effect of tumour-derived NO on tumour progression and angiogenesis was investigated. RESULTS: Tumours in which iNOS expression was decreased displayed significantly reduced growth rates compared with tumours derived from parental C6 cells. Quantitative non-invasive magnetic resonance imaging and fluorescence microscopy of tumour uptake of Hoechst 33342, and haematoxylin and eosin staining, revealed significantly impaired vascular development and function in antisense iNOS tumours compared with control in vivo, primarily associated with the more necrotic tumour core. Decreased iNOS expression had no effect on tumour VEGF expression. CONCLUSION: Nitric oxide derived from tumour iNOS is an important modulator of tumour progression and angiogenesis in C6 gliomas and further supports the therapeutic strategy of inhibiting iNOS for the treatment of cancer. British Journal of Cancer (2011) 104, 83-90. doi:10.1038/sj.bjc.6606034 www.bjcancer.com Published online 7 December 2010 (C) 2011 Cancer Research U

    Portuguese propolis disturbs glycolytic metabolism of human colorectal cancer in vitro

    Get PDF
    Propolis is a resin collected by bees from plant buds and exudates, which is further processed through the activity of bee enzymes. Propolis has been shown to possess many biological and pharmacological properties, such as antimicrobial, antioxidant, immunostimulant and antitumor activities. Due to this bioactivity profile, this resin can become an alternative, economic and safe source of natural bioactive compounds.Antitumor action has been reported in vitro and in vivo for propolis extracts or its isolated compounds; however, Portuguese propolis has been little explored. The aim of this work was to evaluate the in vitro antitumor activity of Portuguese propolis on the human colon carcinoma cell line HCT-15, assessing the effect of different fractions (hexane, chloroform and ethanol residual) of a propolis ethanol extract on cell viability, proliferation, metabolism and death. METHODS: Propolis from Angra do HeroĂ­smo (Azores) was extracted with ethanol and sequentially fractionated in solvents with increasing polarity, n-hexane and chloroform. To assess cell viability, cell proliferation and cell death, Sulforhodamine B, BrDU incorporation assay and Anexin V/Propidium iodide were used, respectively. Glycolytic metabolism was estimated using specific kits. RESULTS: All propolis samples exhibited a cytotoxic effect against tumor cells, in a dose- and time-dependent way. Chloroform fraction, the most enriched in phenolic compounds, appears to be the most active, both in terms of inhibition of viability and cell death. Data also show that this cytotoxicity involves disturbance in tumor cell glycolytic metabolism, seen by a decrease in glucose consumption and lactate production. CONCLUSION: Our results show that Portuguese propolis from Angra do HeroĂ­smo (Azores) can be a potential therapeutic agent against human colorectal cancer.We thank the Portuguese Science and Technology Foundation (FCT) for VMG fellowship (ref. SFRH/BI/33503/2008). The authors thank Mr. Antonio Marques from Frutercoop - Azores, who kindly collected and provided the propolis sample for the study

    Clinical chronobiology: a timely consideration in critical care medicine

    Get PDF
    A fundamental aspect of human physiology is its cyclical nature over a 24-h period, a feature conserved across most life on Earth. Organisms compartmentalise processes with respect to time in order to promote survival, in a manner that mirrors the rotation of the planet and accompanying diurnal cycles of light and darkness. The influence of circadian rhythms can no longer be overlooked in clinical settings; this review provides intensivists with an up-to-date understanding of the burgeoning field of chronobiology, and suggests ways to incorporate these concepts into daily practice to improve patient outcomes. We outline the function of molecular clocks in remote tissues, which adjust cellular and global physiological function according to the time of day, and the potential clinical advantages to keeping in time with them. We highlight the consequences of "chronopathology", when this harmony is lost, and the risk factors for this condition in critically ill patients. We introduce the concept of "chronofitness" as a new target in the treatment of critical illness: preserving the internal synchronisation of clocks in different tissues, as well as external synchronisation with the environment. We describe methods for monitoring circadian rhythms in a clinical setting, and how this technology may be used for identifying optimal time windows for interventions, or to alert the physician to a critical deterioration of circadian rhythmicity. We suggest a chronobiological approach to critical illness, involving multicomponent strategies to promote chronofitness (chronobundles), and further investment in the development of personalised, time-based treatment for critically ill patients

    Environmental effects of ozone depletion, UV radiation and interactions with climate change : UNEP Environmental Effects Assessment Panel, update 2017

    Get PDF
    Peer reviewe
    • …
    corecore