239 research outputs found

    Quantum chromodynamics with advanced computing

    Get PDF
    We survey results in lattice quantum chromodynamics from groups in the USQCD Collaboration. The main focus is on physics, but many aspects of the discussion are aimed at an audience of computational physicists.Comment: 17 pp. Featured presentation at Scientific Discovery with Advanced Computing, July 13-17, Seattl

    The XMM Cluster Survey: Active Galactic Nuclei and Starburst Galaxies in XMMXCS J2215.9-1738 at z=1.46

    Get PDF
    We use Chandra X-ray and Spitzer infrared observations to explore the AGN and starburst populations of XMMXCS J2215.9-1738 at z=1.46, one of the most distant spectroscopically confirmed galaxy clusters known. The high resolution X-ray imaging reveals that the cluster emission is contaminated by point sources that were not resolved in XMM observations of the system, and have the effect of hardening the spectrum, leading to the previously reported temperature for this system being overestimated. From a joint spectroscopic analysis of the Chandra and XMM data, the cluster is found to have temperature T=4.1_-0.9^+0.6 keV and luminosity L_X=(2.92_-0.35^+0.24)x10^44 erg/s extrapolated to a radius of 2 Mpc. As a result of this revised analysis, the cluster is found to lie on the sigma_v-T relation, but the cluster remains less luminous than would be expected from self-similar evolution of the local L_X-T relation. Two of the newly discovered X-ray AGN are cluster members, while a third object, which is also a prominent 24 micron source, is found to have properties consistent with it being a high redshift, highly obscured object in the background. We find a total of eight >5 sigma 24 micron sources associated with cluster members (four spectroscopically confirmed, and four selected using photometric redshifts), and one additional 24 micron source with two possible optical/near-IR counterparts that may be associated with the cluster. Examining the IRAC colors of these sources, we find one object is likely to be an AGN. Assuming that the other 24 micron sources are powered by star formation, their infrared luminosities imply star formation rates ~100 M_sun/yr. We find that three of these sources are located at projected distances of <250 kpc from the cluster center, suggesting that a large amount of star formation may be taking place in the cluster core, in contrast to clusters at low redshift.Comment: Accepted for publication in ApJ, 16 pages, 10 figure

    The XMM Cluster Survey: Forecasting cosmological and cluster scaling-relation parameter constraints

    Get PDF
    We forecast the constraints on the values of sigma_8, Omega_m, and cluster scaling relation parameters which we expect to obtain from the XMM Cluster Survey (XCS). We assume a flat Lambda-CDM Universe and perform a Monte Carlo Markov Chain analysis of the evolution of the number density of galaxy clusters that takes into account a detailed simulated selection function. Comparing our current observed number of clusters shows good agreement with predictions. We determine the expected degradation of the constraints as a result of self-calibrating the luminosity-temperature relation (with scatter), including temperature measurement errors, and relying on photometric methods for the estimation of galaxy cluster redshifts. We examine the effects of systematic errors in scaling relation and measurement error assumptions. Using only (T,z) self-calibration, we expect to measure Omega_m to +-0.03 (and Omega_Lambda to the same accuracy assuming flatness), and sigma_8 to +-0.05, also constraining the normalization and slope of the luminosity-temperature relation to +-6 and +-13 per cent (at 1sigma) respectively in the process. Self-calibration fails to jointly constrain the scatter and redshift evolution of the luminosity-temperature relation significantly. Additional archival and/or follow-up data will improve on this. We do not expect measurement errors or imperfect knowledge of their distribution to degrade constraints significantly. Scaling-relation systematics can easily lead to cosmological constraints 2sigma or more away from the fiducial model. Our treatment is the first exact treatment to this level of detail, and introduces a new `smoothed ML' estimate of expected constraints.Comment: 28 pages, 17 figures. Revised version, as accepted for publication in MNRAS. High-resolution figures available at http://xcs-home.org (under "Publications"

    First-year Sloan Digital Sky Survey-II (SDSS-II) Supernova Results: Hubble Diagram and Cosmological Parameters

    Get PDF
    We present measurements of the Hubble diagram for 103 Type Ia supernovae (SNe) with redshifts 0.04 < z < 0.42, discovered during the first season (Fall 2005) of the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. These data fill in the redshift "desert" between low- and high-redshift SN Ia surveys. We combine the SDSS-II measurements with new distance estimates for published SN data from the ESSENCE survey, the Supernova Legacy Survey, the Hubble Space Telescope, and a compilation of nearby SN Ia measurements. Combining the SN Hubble diagram with measurements of Baryon Acoustic Oscillations from the SDSS Luminous Red Galaxy sample and with CMB temperature anisotropy measurements from WMAP, we estimate the cosmological parameters w and Omega_M, assuming a spatially flat cosmological model (FwCDM) with constant dark energy equation of state parameter, w. For the FwCDM model and the combined sample of 288 SNe Ia, we find w = -0.76 +- 0.07(stat) +- 0.11(syst), Omega_M = 0.306 +- 0.019(stat) +- 0.023(syst) using MLCS2k2 and w = -0.96 +- 0.06(stat) +- 0.12(syst), Omega_M = 0.265 +- 0.016(stat) +- 0.025(syst) using the SALT-II fitter. We trace the discrepancy between these results to a difference in the rest-frame UV model combined with a different luminosity correction from color variations; these differences mostly affect the distance estimates for the SNLS and HST supernovae. We present detailed discussions of systematic errors for both light-curve methods and find that they both show data-model discrepancies in rest-frame UU-band. For the SALT-II approach, we also see strong evidence for redshift-dependence of the color-luminosity parameter (beta). Restricting the analysis to the 136 SNe Ia in the Nearby+SDSS-II samples, we find much better agreement between the two analysis methods but with larger uncertainties.Comment: Accepted for publication by ApJ

    Sloan Digital Sky Survey Imaging of Low Galactic Latitude Fields: Technical Summary and Data Release

    Full text link
    The Sloan Digital Sky Survey (SDSS) mosaic camera and telescope have obtained five-band optical-wavelength imaging near the Galactic plane outside of the nominal survey boundaries. These additional data were obtained during commissioning and subsequent testing of the SDSS observing system, and they provide unique wide-area imaging data in regions of high obscuration and star formation, including numerous young stellar objects, Herbig-Haro objects and young star clusters. Because these data are outside the Survey regions in the Galactic caps, they are not part of the standard SDSS data releases. This paper presents imaging data for 832 square degrees of sky (including repeats), in the star-forming regions of Orion, Taurus, and Cygnus. About 470 square degrees are now released to the public, with the remainder to follow at the time of SDSS Data Release 4. The public data in Orion include the star-forming region NGC 2068/NGC 2071/HH24 and a large part of Barnard's loop.Comment: 31 pages, 9 figures (3 missing to save space), accepted by AJ, in press, see http://photo.astro.princeton.edu/oriondatarelease for data and paper with all figure

    The Hubble Constant

    Get PDF
    I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H0H_0 values of around 72-74km/s/Mpc , with typical errors of 2-3km/s/Mpc. This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67-68km/s/Mpc and typical errors of 1-2km/s/Mpc. The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.Comment: Extensively revised and updated since the 2007 version: accepted by Living Reviews in Relativity as a major (2014) update of LRR 10, 4, 200

    f(R) theories

    Get PDF
    Over the past decade, f(R) theories have been extensively studied as one of the simplest modifications to General Relativity. In this article we review various applications of f(R) theories to cosmology and gravity - such as inflation, dark energy, local gravity constraints, cosmological perturbations, and spherically symmetric solutions in weak and strong gravitational backgrounds. We present a number of ways to distinguish those theories from General Relativity observationally and experimentally. We also discuss the extension to other modified gravity theories such as Brans-Dicke theory and Gauss-Bonnet gravity, and address models that can satisfy both cosmological and local gravity constraints.Comment: 156 pages, 14 figures, Invited review article in Living Reviews in Relativity, Published version, Comments are welcom

    ABUNDANCES, STELLAR PARAMETERS, AND SPECTRA FROM THE SDSS-III/APOGEE SURVEY

    Get PDF
    The SDSS-III/Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey operated from 2011–2014 using the APOGEE spectrograph, which collects high-resolution (R ~ 22,500), near-IR (1.51–1.70 ”m) spectra with a multiplexing (300 fiber-fed objects) capability. We describe the survey data products that are publicly available, which include catalogs with radial velocity, stellar parameters, and 15 elemental abundances for over 150,000 stars, as well as the more than 500,000 spectra from which these quantities are derived. Calibration relations for the stellar parameters (Teff , log g, [M/H], [a/M]) and abundances (C, N, O, Na, Mg, Al, Si, S, K, Ca, Ti, V, Mn, Fe, Ni) are presented and discussed. The internal scatter of the abundances within clusters indicates that abundance precision is generally between 0.05 and 0.09 dex across a broad temperature range; it is smaller for some elemental abundances within more limited ranges and at high signal-to-noise ratio. We assess the accuracy of the abundances using comparison of mean cluster metallicities with literature values, APOGEE observations of the solar spectrum and of Arcturus, comparison of individual star abundances with other measurements, and consideration of the locus of derived parameters and abundances of the entire sample, and find that it is challenging to determine the absolute abundance scale; external accuracy may be good to 0.1–0.2 dex. Uncertainties may be larger at cooler temperatures (Teff < 4000 K). Access to the public data release and data products is described, and some guidance for using the data products is provided

    WISE x SuperCOSMOS photometric redshift catalog: 20 million galaxies over 3pi steradians

    Get PDF
    We cross-match the two currently largest all-sky photometric catalogs, mid-infrared WISE and SuperCOSMOS scans of UKST/POSS-II photographic plates, to obtain a new galaxy sample that covers 3pi steradians. In order to characterize and purify the extragalactic dataset, we use external GAMA and SDSS spectroscopic information to define quasar and star loci in multicolor space, aiding the removal of contamination from our extended-source catalog. After appropriate data cleaning we obtain a deep wide-angle galaxy sample that is approximately 95% pure and 90% complete at high Galactic latitudes. The catalog contains close to 20 million galaxies over almost 70% of the sky, outside the Zone of Avoidance and other confused regions, with a mean surface density of over 650 sources per square degree. Using multiwavelength information from two optical and two mid-IR photometric bands, we derive photometric redshifts for all the galaxies in the catalog, using the ANNz framework trained on the final GAMA-II spectroscopic data. Our sample has a median redshift of z_{med} = 0.2 but with a broad dN/dz reaching up to z>0.4. The photometric redshifts have a mean bias of |delta_z|~10^{-3}, normalized scatter of sigma_z = 0.033 and less than 3% outliers beyond 3sigma_z. Comparison with external datasets shows no significant variation of photo-z quality with sky position. Together with the overall statistics, we also provide a more detailed analysis of photometric redshift accuracy as a function of magnitudes and colors. The final catalog is appropriate for `all-sky' 3D cosmology to unprecedented depths, in particular through cross-correlations with other large-area surveys. It should also be useful for source pre-selection and identification in forthcoming surveys such as TAIPAN or WALLABY

    The Atacama Cosmology Telescope: Detection of Sunyaev-Zel'dovich Decrement in Groups and Clusters Associated with Luminous Red Galaxies

    Full text link
    We present a detection of the Sunyaev-Zel'dovich (SZ) decrement associated with the Luminous Red Galaxy (LRG) sample of the Sloan Digital Sky Survey. The SZ data come from 148 GHz maps of the equatorial region made by the Atacama Cosmology Telescope (ACT). The LRG sample is divided by luminosity into four bins, and estimates for the central Sunyaev-Zel'dovich temperature decrement are calculated through a stacking process. We detect and account for a bias of the SZ signal due to weak radio sources. We use numerical simulations to relate the observed decrement to Y200 and clustering properties to relate the galaxy luminosity bins to mass. We also use a relation between brightest cluster galaxy luminosity and cluster mass based on stacked gravitational lensing measurements to estimate the characteristic halo masses. The masses are found to be around 1e14 M_sun.Comment: Accepted in ApJ. 14 pages, 6 figure
    • 

    corecore