27 research outputs found

    Modulation of Hanle magnetoresistance in an ultrathin platinum film by ionic gating

    Full text link
    Hanle magnetoresistance (HMR) is a type of magnetoresistance where interplay of the spin Hall effect, Hanle-type spin precession, and spin-dependent scattering at the top/bottom surfaces in a heavy metal controls the effect. In this study, we modulate HMR in ultrathin Pt by ionic gating, where the surface Rashba field created by a strong electric field at the interface between the ionic gate and Pt plays the dominant role in the modulation. This finding can facilitate investigations of gate-tunable, spin-related effects and fabrication of spin devices.Comment: 10 pages, 3 figures (To appear in Applied Physics Express

    Anomalous sign inversion of spin-orbit torque in ferromagnetic/nonmagnetic bilayer systems due to self-induced spin-orbit torque

    Full text link
    Self-induced spin-orbit torques (SI-SOTs) in ferromagnetic (FM) layers have been overlooked when estimating the spin Hall angle (SHA) of adjacent nonmagnetic (NM) layers. In this work, we observe anomalous sign inversion of the total SOT in the spin-torque ferromagnetic resonance due to the enhanced SI-SOT, and successfully rationalize the sign inversion through a theoretical calculation considering the SHE in both the NM and FM layers. The findings show that using an FM layer whose SHA sign is the same as that of the NM achieves efficient SOT-magnetization switching with the assistance of the SI-SOT. The contribution of the SI-SOT becomes salient for a weakly conductive NM layer, and conventional analyses that do not consider the SI-SOT can overestimate the SHA of the NM layer by a factor of more than 150.Comment: 9 pages, 4 figure

    Significant suppression of two-magnon scattering in ultrathin Co by controlling the surface magnetic anisotropy at the Co/nonmagnet interfaces

    Get PDF
    To enable suppression of two-magnon scattering (TMS) in nanometer-thick Co (ultrathin Co) layers and realize low-magnon damping in such layers, the magnon damping in ultrathin Co layers grown on various nonmagnetic seed layers with different surface magnetic anisotropy (SMA) energies are investigated. We verify the significantly weak magnon damping realized by varying the seeding layer species used. Although TMS is enhanced in ultrathin Co on Cu and Al seeding layers, the insertion of a Ti seeding layer below the ultrathin Co greatly suppresses the TMS, which is attributed to suppression of the SMA at the interface between Co and Ti. The Gilbert damping constant of the ultrathin Co layer on Ti (3 nm), 0.020, is comparable to the value for bulk Co, although the Co layer thickness here is only 2 nm. Realization of such weak magnon damping can open the door to tunable magnon excitation, thus enabling coupling of magnons with other quanta such as photons, given that the magnetization of ultrathin ferromagnets can be tuned using an external electric field

    Enhancement of low-frequency spin-orbit-torque ferromagnetic resonance signals by frequency tuning observed in Pt/Py, Pt/Co, and Pt/Fe bilayers

    Get PDF
    DC voltages via spin rectification effect (SRE), VDC, under microwave irradiation are investigated for three platinum (Pt)/ferromagnetic metal (FM) bilayer structures: Pt/Ni₈₀Fe₂₀, Pt/Co, and Pt/Fe. At the microwave frequency region lower than the resonant frequency, large VDC is obtained at zero DC magnetic field for all devices. In frequency dependence just around the resonant frequency, sharp rise and drop of magnitude in VDC are observed. These behaviors are well explained by the numerically calculated magnetic susceptibility. It is also found that the magnitude of VDC is strongly dependent on the slope of magnetoresistance spectrum. These findings lead to developments of sensitive detection technique for nano-scale magnetization switching

    Observation of gigantic spin conversion anisotropy in bismuth

    Full text link
    Whilst the g-factor can be anisotropic due to the spin-orbit interaction (SOI), its existence in solids cannot be simply asserted from a band structure, which hinders progress on studies from such the viewpoints. The g-factor in bismuth (Bi) is largely anisotropic; especially for holes at T-point, the g-factor perpendicular to the trigonal axis is negligibly small (< 0.112), whereas the g-factor along the trigonal axis is very large (62.7). We clarified in this work that the large g- factor anisotropy gives rise to the gigantic spin conversion anisotropy in Bi from experimental and theoretical approaches. Spin-torque ferromagnetic resonance was applied to estimate the spin conversion efficiency in rhombohedral (110) Bi to be 17%, which is unlike the negligibly small efficiency in Bi(111). Harmonic Hall measurements supports the large spin conversion efficiency in Bi(110). This is the first observation of gigantic spin conversion anisotropy as the clear manifestation of the g-factor anisotropy. Beyond the emblematic case of Bi, our study unveiled the significance of the g-factor anisotropy in condensed-matter physics and can pave a pathway toward establishing novel spin physics under g-factor control.Comment: 28 pages, 7 figure

    Global, regional, and national burden of neurological disorders during 1990-2015 : a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background Comparable data on the global and country-specific burden of neurological disorders and their trends are crucial for health-care planning and resource allocation. The Global Burden of Diseases, Injuries, and Risk Factors (GBD) Study provides such information but does not routinely aggregate results that are of interest to clinicians specialising in neurological conditions. In this systematic analysis, we quantified the global disease burden due to neurological disorders in 2015 and its relationship with country development level. Methods We estimated global and country-specific prevalence, mortality, disability-adjusted life-years (DALYs), years of life lost (YLLs), and years lived with disability (YLDs) for various neurological disorders that in the GBD classification have been previously spread across multiple disease groupings. The more inclusive grouping of neurological disorders included stroke, meningitis, encephalitis, tetanus, Alzheimer's disease and other dementias, Parkinson's disease, epilepsy, multiple sclerosis, motor neuron disease, migraine, tension-type headache, medication overuse headache, brain and nervous system cancers, and a residual category of other neurological disorders. We also analysed results based on the Socio-demographic Index (SDI), a compound measure of income per capita, education, and fertility, to identify patterns associated with development and how countries fare against expected outcomes relative to their level of development. Findings Neurological disorders ranked as the leading cause group of DALYs in 2015 (250.7 [95% uncertainty interval (UI) 229.1 to 274.7] million, comprising 10.2% of global DALYs) and the second-leading cause group of deaths (9.4 [9.1 to 9.7] million], comprising 16.8% of global deaths). The most prevalent neurological disorders were tensiontype headache (1505 9 [UI 1337.3 to 1681.6 million cases]), migraine (958.8 [872.1 to 1055.6] million), medication overuse headache (58.5 [50.8 to 67.4 million]), and Alzheimer's disease and other dementias (46.0 [40.2 to 52.7 million]). Between 1990 and 2015, the number of deaths from neurological disorders increased by 36.7%, and the number of DALYs by 7.4%. These increases occurred despite decreases in age-standardised rates of death and DALYs of 26.1% and 29.7%, respectively; stroke and communicable neurological disorders were responsible for most of these decreases. Communicable neurological disorders were the largest cause of DALYs in countries with low SDI. Stroke rates were highest at middle levels of SDI and lowest at the highest SDI. Most of the changes in DALY rates of neurological disorders with development were driven by changes in YLLs. Interpretation Neurological disorders are an important cause of disability and death worldwide. Globally, the burden of neurological disorders has increased substantially over the past 25 years because of expanding population numbers and ageing, despite substantial decreases in mortality rates from stroke and communicable neurological disorders. The number of patients who will need care by clinicians with expertise in neurological conditions will continue to grow in coming decades. Policy makers and health-care providers should be aware of these trends to provide adequate services.Peer reviewe

    Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016.

    Get PDF
    Traumatic brain injury (TBI) and spinal cord injury (SCI) are increasingly recognised as global health priorities in view of the preventability of most injuries and the complex and expensive medical care they necessitate. We aimed to measure the incidence, prevalence, and years of life lived with disability (YLDs) for TBI and SCI from all causes of injury in every country, to describe how these measures have changed between 1990 and 2016, and to estimate the proportion of TBI and SCI cases caused by different types of injury. METHODS: We used results from the Global Burden of Diseases, Injuries, and Risk Factors (GBD) Study 2016 to measure the global, regional, and national burden of TBI and SCI by age and sex. We measured the incidence and prevalence of all causes of injury requiring medical care in inpatient and outpatient records, literature studies, and survey data. By use of clinical record data, we estimated the proportion of each cause of injury that required medical care that would result in TBI or SCI being considered as the nature of injury. We used literature studies to establish standardised mortality ratios and applied differential equations to convert incidence to prevalence of long-term disability. Finally, we applied GBD disability weights to calculate YLDs. We used a Bayesian meta-regression tool for epidemiological modelling, used cause-specific mortality rates for non-fatal estimation, and adjusted our results for disability experienced with comorbid conditions. We also analysed results on the basis of the Socio-demographic Index, a compound measure of income per capita, education, and fertility. FINDINGS: In 2016, there were 27·08 million (95% uncertainty interval [UI] 24·30-30·30 million) new cases of TBI and 0·93 million (0·78-1·16 million) new cases of SCI, with age-standardised incidence rates of 369 (331-412) per 100 000 population for TBI and 13 (11-16) per 100 000 for SCI. In 2016, the number of prevalent cases of TBI was 55·50 million (53·40-57·62 million) and of SCI was 27·04 million (24·98-30·15 million). From 1990 to 2016, the age-standardised prevalence of TBI increased by 8·4% (95% UI 7·7 to 9·2), whereas that of SCI did not change significantly (-0·2% [-2·1 to 2·7]). Age-standardised incidence rates increased by 3·6% (1·8 to 5·5) for TBI, but did not change significantly for SCI (-3·6% [-7·4 to 4·0]). TBI caused 8·1 million (95% UI 6·0-10·4 million) YLDs and SCI caused 9·5 million (6·7-12·4 million) YLDs in 2016, corresponding to age-standardised rates of 111 (82-141) per 100 000 for TBI and 130 (90-170) per 100 000 for SCI. Falls and road injuries were the leading causes of new cases of TBI and SCI in most regions. INTERPRETATION: TBI and SCI constitute a considerable portion of the global injury burden and are caused primarily by falls and road injuries. The increase in incidence of TBI over time might continue in view of increases in population density, population ageing, and increasing use of motor vehicles, motorcycles, and bicycles. The number of individuals living with SCI is expected to increase in view of population growth, which is concerning because of the specialised care that people with SCI can require. Our study was limited by data sparsity in some regions, and it will be important to invest greater resources in collection of data for TBI and SCI to improve the accuracy of future assessments
    corecore