75 research outputs found

    New verified nonindigenous amphibians and reptiles in Florida, 1976 through 2015, with a summary of over 152 years of introductions

    Get PDF
    More nonindigenous species occur in Florida, USA, than any other region worldwide and may threaten many of Florida’s natural resources. The frequency of new reports mandates the need for regular updates. Herein, we use photographic and specimen vouchers in addition to literature records to provide updated information on verified nonindigenous amphibians and reptiles in Florida. Between our most recent summary in 2012 and the end of 2015, 38 additional species are known to have been intercepted (n = 2) or introduced (n = 36). We also update the invasion stage of seven species previously reported from Florida and report that five additional taxa are now established. In total, 191 independent known introductions of 180 herpetofaunal taxa led to the establishment of 63 taxa. This suggests that one in three introduced herpetofaunal species becomes established in Florida. The pet trade represents the most  common introduction pathway among these species animal importer in Hollywood, Broward County, is the probable source for introduction of a quarter of all herpetofauna introduced to Florida

    New Verified Nonindigenous Amphibians and Reptiles in Florida through 2015, with a Summary of More Than 152 Years of Introductions.

    Get PDF
    More nonindigenous species occur in Florida, USA, than any other region worldwide and may threaten many of Florida’s natural resources. The frequency of new reports mandates the need for regular updates. Herein, we use photographic and specimen vouchers in addition to literature records to provide updated information on verified nonindigenous amphibians and reptiles in Florida. Between our most recent summary in 2012 and the end of 2015, 38 additional species are known to have been intercepted (n = 2) or introduced (n = 36). We also update the invasion stage of seven species previously reported from Florida and report that five additional taxa are now established. In total, 191 independent known introductions of 180 herpetofaunal taxa led to the establishment of 63 taxa. This suggests that one in three introduced herpetofaunal species becomes established in Florida. The pet trade represents the most common introduction pathway among these species and a single animal importer in Hollywood, Broward County, is the probable source for introduction of a quarter of all herpetofauna introduced to Florida

    Obesity dysregulates the pulmonary antiviral immune response

    Get PDF
    Obesity is a well-recognized risk factor for severe influenza infections but the mechanisms underlying susceptibility are poorly understood. Here, we identify that obese individuals have deficient pulmonary antiviral immune responses in bronchoalveolar lavage cells but not in bronchial epithelial cells or peripheral blood dendritic cells. We show that the obese human airway metabolome is perturbed with associated increases in the airway concentrations of the adipokine leptin which correlated negatively with the magnitude of ex vivo antiviral responses. Exogenous pulmonary leptin administration in mice directly impaired antiviral type I interferon responses in vivo and ex vivo in cultured airway macrophages. Obese individuals hospitalised with influenza showed dysregulated upper airway immune responses. These studies provide insight into mechanisms driving propensity to severe influenza infections in obesity and raise the potential for development of leptin manipulation or interferon administration as novel strategies for conferring protection from severe infections in obese higher risk individuals

    Characterizing a World Within the Hot-Neptune Desert: Transit Observations of LTT 9779 b with the Hubble Space Telescope/WFC3

    Get PDF
    We present an atmospheric analysis of LTT 9779 b, a rare planet situated in the hot-Neptune desert, that has been observed with Hubble Space Telescope (HST)/WFC3 with G102 and G141. The combined transmission spectrum, which covers 0.8–1.6 μm, shows a gradual increase in transit depth with wavelength. Our preferred atmospheric model shows evidence for H2O, CO2, and FeH with a significance of 3.1σ, 2.4σ, and 2.1σ, respectively. In an attempt to constrain the rate of atmospheric escape for this planet, we search for the 1.083 μm helium line in the G102 data but find no evidence of excess absorption that would indicate an escaping atmosphere using this tracer. We refine the orbital ephemerides of LTT 9779 b using our HST data and observations from TESS, searching for evidence of orbital decay or apsidal precession, which are not found. The phase-curve observation of LTT 9779 b with JWST NIRISS should provide deeper insights into the atmosphere of this planet and the expected atmospheric escape might be detected with further observations concentrated on other tracers such as Lyα

    Characterising a World Within the Hot Neptune Desert: Transit Observations of LTT 9779 b with HST WFC3

    Full text link
    We present an atmospheric analysis of LTT 9779 b, a rare planet situated in the hot Neptune desert, that has been observed with HST WFC3 G102 and G141. The combined transmission spectrum, which covers 0.8 - 1.6 μ\mum, shows a gradual increase in transit depth with wavelength. Our preferred atmospheric model shows evidence for H2_{\rm 2}O, CO2_{\rm 2} and FeH with a significance of 3.1 σ\sigma, 2.4 σ\sigma and 2.1 σ\sigma, respectively. In an attempt to constrain the rate of atmospheric escape for this planet, we search for the 1.083 μ\mum Helium line in the G102 data but find no evidence of excess absorption that would indicate an escaping atmosphere using this tracer. We refine the orbital ephemerides of LTT 9779 b using our HST data and observations from TESS, searching for evidence of orbital decay or apsidal precession, which is not found. The phase-curve observation of LTT 9779 b with JWST NIRISS should provide deeper insights into the atmosphere of this planet and the expected atmospheric escape might be detected with further observations concentrated on other tracers such as Lyman α\alpha.Comment: Accepted for publication in A

    Developing priority variables ("ecosystem Essential Ocean Variables" — eEOVs) for observing dynamics and change in Southern Ocean ecosystems

    Get PDF
    Reliable statements about variability and change in marine ecosystems and their underlying causes are needed to report on their status and to guide management. Here we use the Framework on Ocean Observing (FOO) to begin developing ecosystem Essential Ocean Variables (eEOVs) for the Southern Ocean Observing System (SOOS). An eEOV is a defined biological or ecological quantity, which is derived from field observations, and which contributes significantly to assessments of Southern Ocean ecosystems. Here, assessments are concerned with estimating status and trends in ecosystem properties, attribution of trends to causes, and predicting future trajectories. eEOVs should be feasible to collect at appropriate spatial and temporal scales and are useful to the extent that they contribute to direct estimation of trends and/or attribution, and/or development of ecological (statistical or simulation) models to support assessments. In this paper we outline the rationale, including establishing a set of criteria, for selecting eEOVs for the SOOS and develop a list of candidate eEOVs for further evaluation. Other than habitat variables, nine types of eEOVs for Southern Ocean taxa are identified within three classes: state (magnitude, genetic/species, size spectrum), predator–prey (diet, foraging range), and autecology (phenology, reproductive rate, individual growth rate, detritus). Most candidates for the suite of Southern Ocean taxa relate to state or diet. Candidate autecological eEOVs have not been developed other than for marine mammals and birds. We consider some of the spatial and temporal issues that will influence the adoption and use of eEOVs in an observing system in the Southern Ocean, noting that existing operations and platforms potentially provide coverage of the four main sectors of the region — the East and West Pacific, Atlantic and Indian. Lastly, we discuss the importance of simulation modelling in helping with the design of the observing system in the long term. Regional boundary: south of 30°S

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Think globally, measure locally: The MIREN standardized protocol for monitoring plant species distributions along elevation gradients

    Get PDF
    Climate change and other global change drivers threaten plant diversity in mountains worldwide. A widely documented response to such environmental modifications is for plant species to change their elevational ranges. Range shifts are often idiosyncratic and difficult to generalize, partly due to variation in sampling methods. There is thus a need for a standardized monitoring strategy that can be applied across mountain regions to assess distribution changes and community turnover of native and non-native plant species over space and time. Here, we present a conceptually intuitive and standardized protocol developed by the Mountain Invasion Research Network (MIREN) to systematically quantify global patterns of native and non-native species distributions along elevation gradients and shifts arising from interactive effects of climate change and human disturbance. Usually repeated every five years, surveys consist of 20 sample sites located at equal elevation increments along three replicate roads per sampling region. At each site, three plots extend from the side of a mountain road into surrounding natural vegetation. The protocol has been successfully used in 18 regions worldwide from 2007 to present. Analyses of one point in time already generated some salient results, and revealed region-specific elevational patterns of native plant species richness, but a globally consistent elevational decline in non-native species richness. Non-native plants were also more abundant directly adjacent to road edges, suggesting that disturbed roadsides serve as a vector for invasions into mountains. From the upcoming analyses of time series, even more exciting results can be expected, especially about range shifts. Implementing the protocol in more mountain regions globally would help to generate a more complete picture of how global change alters species distributions. This would inform conservation policy in mountain ecosystems, where some conservation policies remain poorly implemented
    corecore