49 research outputs found

    Assessing the use of marine protected areas by loggerhead sea turtles (Caretta caretta) tracked from the western Mediterranean.

    Full text link
    Up to date 264 Marine Protected Areas (MPAs) have been declared in the western Mediterranean Sea. The management plans of 25 of these MPAs include the loggerhead sea turtle (Caretta caretta) as a priority species to protect. However, the actual use of these MPAs by the species remains unknown. Therefore, it is important to assess their contribution to loggerhead conservation in the area. To this end, satellite tracking data of 103 loggerhead turtles of varying sizes and life stages released in Spanish Mediterranean waters and Southern Tyrrhenian Sea over the 2003-2018 period were herein used. Home range and use of MPAs by tracked loggerhead turtles were analysed using post-processed state-space model locations. The tracked turtles visited several Mediterranean MPAs, but barely used them (mean percentage of monitoring time = 12.6 ± 18.2 %). There was very little overlap between turtle's core areas and tracks with the protected areas. Indeed, most of the core areas and high-density areas estimated (>85 %) were not included within any of the MPAs. Furthermore, less than 5 % of the Mediterranean MPAs were used by any tracked loggerhead sea turtles. Most of these MPAs have no protection measures that focus on this species. Loggerheads mainly use wide oceanic zones and international waters, which are difficult to protect. A high-use core area was identified for loggerhead turtles, located at the western waters of the Algerian Basin, an important fishing area outside any designated MPA and with no protection measures that focus on marine turtle conservation. We conclude that existing MPAs in the western Mediterranean may not contribute enough to loggerhead turtle conservation. We propose potential MPAs designations to be considered for loggerhead sea turtle conservation in the Mediterranean Sea at the Alboran Sea, the Algerian basin, the Northern area of the Strait of Sicily, Northeast Tunisian waters, waters around Malta, waters at the Tyrrhenian Sea and at the Ionian Sea

    Phenotypic Divergence among West European Populations of Reed Bunting Emberiza schoeniclus: The Effects of Migratory and Foraging Behaviours

    Get PDF
    [EN] Divergent selection and local adaptation are responsible for many phenotypic differences between populations, potentially leading to speciation through the evolution of reproductive barriers. Here we evaluated the morphometric divergence among west European populations of Reed Bunting in order to determine the extent of local adaptation relative to two important selection pressures often associated with speciation in birds: migration and diet. We show that, as expected by theory, migratory E. s. schoeniclus had longer and more pointed wings and a slightly smaller body mass than the resident subspecies, with the exception of E. s. lusitanica, which despite having rounder wings was the smallest of all subspecies. Tail length, however, did not vary according to the expectation (shorter tails in migrants) probably because it is strongly correlated with wing length and might take longer to evolve. E. s. witherbyi, which feed on insects hiding inside reed stems during the winter, had a very thick, stubby bill. In contrast, northern populations, which feed on seeds, had thinner bills. Despite being much smaller, the southern E. s. lusitanica had a significantly thicker, longer bill than migratory E. s. schoeniclus, whereas birds from the UK population had significantly shorter, thinner bills. Geometric morphometric analyses revealed that the southern subspecies have a more convex culmen than E. s. schoeniclus, and E. s. lusitanica differs from the nominate subspecies in bill shape to a greater extent than in linear bill measurements, especially in males. Birds with a more convex culmen are thought to exert a greater strength at the bill tip, which is in agreement with their feeding technique. Overall, the three subspecies occurring in Western Europe differ in a variety of traits following the patterns predicted from their migratory and foraging behaviours, strongly suggesting that these birds have became locally adapted through natural selection.Some fieldwork in Portugal was supported financially by ICETA, University of Porto. LG and JMN were supported financially by the Portuguese Foundation for Science and Technology through grants SFRH/BD/64645/2009 and SFRH/BPD/40667/2007, respectively. JSM and EJB were funded by the projects CGL2005-02041/BOS and CGL2010-21933-C02-02 granted by Ministerio de Ciencia e Innovacion (Spain). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Neto, JM.; Gordinho, L.; Belda, EJ.; Marín Villora, M.; Monrós González, JS.; Fearon, P.; Crates, R. (2013). Phenotypic Divergence among West European Populations of Reed Bunting Emberiza schoeniclus: The Effects of Migratory and Foraging Behaviours. PLoS ONE. 8(5):1-11. https://doi.org/10.1371/journal.pone.0063248S11185Van Doorn, G. S., Edelaar, P., & Weissing, F. J. (2009). On the Origin of Species by Natural and Sexual Selection. Science, 326(5960), 1704-1707. doi:10.1126/science.1181661Winker, K. (2010). Chapter 1: Subspecies Represent Geographically Partitioned Variation, A Gold Mine of Evolutionary Biology, and a Challenge for Conservation. Ornithological Monographs, 67(1), 6-23. doi:10.1525/om.2010.67.1.6Servedio, M. R., Doorn, G. S. V., Kopp, M., Frame, A. M., & Nosil, P. (2011). Magic traits in speciation: ‘magic’ but not rare? Trends in Ecology & Evolution, 26(8), 389-397. doi:10.1016/j.tree.2011.04.005Via, S. (2009). Natural selection in action during speciation. Proceedings of the National Academy of Sciences, 106(Supplement_1), 9939-9946. doi:10.1073/pnas.0901397106Shaw, K. L., & Mullen, S. P. (2011). Genes versus phenotypes in the study of speciation. Genetica, 139(5), 649-661. doi:10.1007/s10709-011-9562-4Bearhop, S. (2005). Assortative Mating as a Mechanism for Rapid Evolution of a Migratory Divide. Science, 310(5747), 502-504. doi:10.1126/science.1115661Pérez-Tris, J., Ramírez, Á., & Tellería, J. L. (2003). Are Iberian ChiffchaffsPhylloscopus (collybita) brehmiilong-distance migrants? An analysis of flight-related morphology. Bird Study, 50(2), 146-152. doi:10.1080/00063650309461306Irwin DE, Irwin JH (2005) Siberian migratory divides. The role of seasonal migration in speciation. In: Greenberg R, Marra PP, editors. Birds of Two Worlds. Johns Hopkins University Press, Baltimore, Maryland. 27–40.BENSCH, S., GRAHN, M., MÜLLER, N., GAY, L., & ÅKESSON, S. (2009). Genetic, morphological, and feather isotope variation of migratory willow warblers show gradual divergence in a ring. Molecular Ecology, 18(14), 3087-3096. doi:10.1111/j.1365-294x.2009.04210.xRohwer, S., & Irwin, D. E. (2011). Molt, Orientation, and Avian Speciation. The Auk, 128(2), 419-425. doi:10.1525/auk.2011.10176Grant, P. R. (2002). Unpredictable Evolution in a 30-Year Study of Darwin’s Finches. Science, 296(5568), 707-711. doi:10.1126/science.1070315Ryan, P. G., Bloomer, P., Moloney, C. L., Grant, T. J., & Delport, W. (2007). Ecological Speciation in South Atlantic Island Finches. Science, 315(5817), 1420-1423. doi:10.1126/science.1138829Benkman, C. W. (2003). DIVERGENT SELECTION DRIVES THE ADAPTIVE RADIATION OF CROSSBILLS. Evolution, 57(5), 1176-1181. doi:10.1111/j.0014-3820.2003.tb00326.xFunk, D. J., Nosil, P., & Etges, W. J. (2006). Ecological divergence exhibits consistently positive associations with reproductive isolation across disparate taxa. Proceedings of the National Academy of Sciences, 103(9), 3209-3213. doi:10.1073/pnas.0508653103Cramp S, Perrins CM (1994) Handbook of the birds of Europe, the Middle East and North Africa. The birds of the Western Palaearctic. Volume 9: Buntings and new world warblers. Oxford University Press, Oxford. 522 p.Byers C, Curson J, Olson U (1995) Sparrows and Buntings: A Guide to the Sparrows and Buntings of North America and the World. Houghton Mifflin, New York.MATESSI, G., GRIGGIO, M., & PILASTRO, A. (2002). The geographical distribution of populations of the large-billed subspecies of reed bunting matches that of its main winter food. Biological Journal of the Linnean Society, 75(1), 21-26. doi:10.1046/j.1095-8312.2002.00003.xOrłowski, G., & Czarnecka, J. (2007). Winter diet of reed bunting Emberiza schoeniclus in fallow and stubble fields. Agriculture, Ecosystems & Environment, 118(1-4), 244-248. doi:10.1016/j.agee.2006.05.026Clements JF, Schulenberg TS, Iliff MJ, Sullivan BL, Wood CL, et al.. (2011) The Clements checklist of birds of the world: Version 6.6. Available: https://www.birds.cornell.edu/clementschecklist/download/del Hoyo J, Elliot A, Christie DA (ed) (2011) Handbook of the birds of the world. Vol. 16. Lynx edicions, Barcelona. 894 p.Steinbacher, F. (1930). Bemerkungen zur Systematik der Rohrammern,Emberiza schoeniclus (L.). Journal für Ornithologie, 78(4), 471-487. doi:10.1007/bf01953149Atienza JC (2006) El escribano palustre em España. I Censo nacional (2005). SEO/BirdLife, Madrid. 72 p.Copete, J. L., Mariné, R., Bigas, D., & Martínez-Vilalta, A. (1999). Differences in wing shape between sedentary and migratory Reed BuntingsEmberiza schoeniclus. Bird Study, 46(1), 100-103. doi:10.1080/00063659909461119GRAPPUTO, A., PILASTRO, A., & MARIN, G. (1998). Genetic variation and bill size dimorphism in a passerine bird, the reed bunting Emberiza schoeniclus. Molecular Ecology, 7(9), 1173-1182. doi:10.1046/j.1365-294x.1998.00441.xZink, R. M., Pavlova, A., Drovetski, S., & Rohwer, S. (2008). Mitochondrial phylogeographies of five widespread Eurasian bird species. Journal of Ornithology, 149(3), 399-413. doi:10.1007/s10336-008-0276-zKvist, L., Ponnikas, S., Belda, E. J., Encabo, I., Martínez, E., Onrubia, A., … Monrós, J. S. (2011). Endangered subspecies of the Reed Bunting (Emberiza schoeniclus witherbyi and E. s. lusitanica) in Iberian Peninsula have different genetic structures. Journal of Ornithology, 152(3), 681-693. doi:10.1007/s10336-011-0646-9Matessi, G., Dabelsteen, T., & Pilastro, A. (2000). Responses to playback of different subspecies songs in the Reed Bunting Emberiza schoeniclus. Journal of Avian Biology, 31(1), 96-101. doi:10.1034/j.1600-048x.2000.310113.xPodos, J. (2001). Correlated evolution of morphology and vocal signal structure in Darwin’s finches. Nature, 409(6817), 185-188. doi:10.1038/35051570Hedenström, A. (2007). Adaptations to migration in birds: behavioural strategies, morphology and scaling effects. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1490), 287-299. doi:10.1098/rstb.2007.2140MILÁ, B., WAYNE, R. K., & SMITH, T. B. (2008). ECOMORPHOLOGY OF MIGRATORY AND SEDENTARY POPULATIONS OF THE YELLOW-RUMPED WARBLER (DENDROICA CORONATA). The Condor, 110(2), 335-344. doi:10.1525/cond.2008.8396Keller, L. F., Grant, P. R., Grant, B. R., & Petren, K. (2001). Heritability of morphological traits in Darwin’s Finches: misidentified paternity and maternal effects. Heredity, 87(3), 325-336. doi:10.1046/j.1365-2540.2001.00900.xTarka, M., Åkesson, M., Beraldi, D., Hernández-Sánchez, J., Hasselquist, D., Bensch, S., & Hansson, B. (2010). A strong quantitative trait locus for wing length on chromosome 2 in a wild population of great reed warblers. Proceedings of the Royal Society B: Biological Sciences, 277(1692), 2361-2369. doi:10.1098/rspb.2010.0033Svensson L (1992) Identification guide to European passerines, 4th edition. Lars Svensson, Stockholm.De La Puente, J., & Seoane, J. (2001). The use of primary abrasion for ageing reed buntingsemberiza schoeniclus. Ringing & Migration, 20(3), 221-223. doi:10.1080/03078698.2001.9674249Jenni, L., & Winkler, R. (1989). The feather-length of small passerines: a measurement for wing-length in live birds and museum skins. Bird Study, 36(1), 1-15. doi:10.1080/00063658909476996Gosler, A. G., Greenwood, J. J. D., Baker, J. K., & Davidson, N. C. (1998). The field determination of body size and condition in passerines: a report to the British Ringing Committee. Bird Study, 45(1), 92-103. doi:10.1080/00063659809461082James Rohlf, F., & Marcus, L. F. (1993). A revolution morphometrics. Trends in Ecology & Evolution, 8(4), 129-132. doi:10.1016/0169-5347(93)90024-jMarcus LF, Corti M, Loy A, Naylor GJP, Slice DE (eds) (1996) Advances in Morphometrics. NATO ASI Series A: Life Sciences. Plenum Press, New York.Klingenberg CP (1996) Multivariate allometry. In: Marcus LF, Corti M, Loy A, Naylor G, Slice DE, editors. Advances in Morphometrics, Plenum Press, New York. 23–49.Zelditch M, Swiderski D, Sheets H, Fink W (2004) Geometric Morphometrics for Biologists: A Primer. Elsevier Academic Press, London.FOSTER, D. J., PODOS, J., & HENDRY, A. P. (2007). A geometric morphometric appraisal of beak shape in Darwin’s finches. Journal of Evolutionary Biology, 21(1), 263-275. doi:10.1111/j.1420-9101.2007.01449.xNavarro, J., Kaliontzopoulou, A., & González-Solís, J. (2009). Sexual dimorphism in bill morphology and feeding ecology in Cory’s shearwater (Calonectris diomedea). Zoology, 112(2), 128-138. doi:10.1016/j.zool.2008.05.001Berns, C. M., & Adams, D. C. (2010). Bill Shape and Sexual Shape Dimorphism between two Species of Temperate Hummingbirds: Black-Chinned Hummingbird (Archilochusalexandri) and Ruby-Throated Hummingbird (A. colubris). The Auk, 127(3), 626-635. doi:10.1525/auk.2010.09213Rohlf FJ (2010) Morphometrics at SUNY Stony Brook. Available: http://life.bio.sunysb.edu/morphRohlf FJ (2010) tps Utility program. Version 1.46. Department of Ecology and Evolution, State University of New York at Stony Brook.Kaliontzopoulou, A., Carretero, M. A., & Llorente, G. A. (2007). Multivariate and geometric morphometrics in the analysis of sexual dimorphism variation inPodarcis lizards. Journal of Morphology, 268(2), 152-165. doi:10.1002/jmor.10494Rohlf FJ (2010) tpsDig. Version 2.16. Department of Ecology and Evolution, State University of New York at Stony Brook.Rohlf FJ (2003) tpsSmall, version 1.20. Department of Ecology and Evolution, State University of New York at Stony Brook.Rohlf, F. J., & Slice, D. (1990). Extensions of the Procrustes Method for the Optimal Superimposition of Landmarks. Systematic Zoology, 39(1), 40. doi:10.2307/2992207Rohlf, F. J. (1999). Shape Statistics: Procrustes Superimpositions and Tangent Spaces. Journal of Classification, 16(2), 197-223. doi:10.1007/s003579900054Rohlf FJ (2010) tpsRelw, relative warps analysis, version 1.49. Department of Ecology and Evolution, State University of New York at Stony Brook.LLEONART, J., SALAT, J., & TORRES, G. J. (2000). Removing Allometric Effects of Body Size in Morphological Analysis. Journal of Theoretical Biology, 205(1), 85-93. doi:10.1006/jtbi.2000.2043IBM Corp. (2011) IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp.BALDWIN, M. W., WINKLER, H., ORGAN, C. L., & HELM, B. (2010). Wing pointedness associated with migratory distance in common-garden and comparative studies of stonechats (Saxicola torquata). Journal of Evolutionary Biology, 23(5), 1050-1063. doi:10.1111/j.1420-9101.2010.01975.xFörschler, M. I., & Bairlein, F. (2011). Morphological Shifts of the External Flight Apparatus across the Range of a Passerine (Northern Wheatear) with Diverging Migratory Behaviour. PLoS ONE, 6(4), e18732. doi:10.1371/journal.pone.0018732Wernham CV, Toms MP, Marchant JH, Clark JA, Siriwardena GM, et al.. (eds) (2002) The Migration Atlas: movements of the birds of Britain and Ireland. T. & A.D. Poyser, London.Tarka M (2012) Evolutionary dynamics of migration and breeding in wild birds: genetic architecture, sexual conflicts and evolutionary constrains. PhD dissertation, Lund, University, Sweden. 264 p.Greenberg, R., & Olsen, B. (2010). Bill size and dimorphism in tidal-marsh sparrows: island-like processes in a continental habitat. Ecology, 91(8), 2428-2436. doi:10.1890/09-1136.1Cooper, I. A., Gilman, R. T., & Boughman, J. W. (2011). SEXUAL DIMORPHISM AND SPECIATION ON TWO ECOLOGICAL COINS: PATTERNS FROM NATURE AND THEORETICAL PREDICTIONS. Evolution, 65(9), 2553-2571. doi:10.1111/j.1558-5646.2011.01332.xGreenberg, R., Cadena, V., Danner, R. M., & Tattersall, G. (2012). Heat Loss May Explain Bill Size Differences between Birds Occupying Different Habitats. PLoS ONE, 7(7), e40933. doi:10.1371/journal.pone.0040933Greenberg, R., Danner, R., Olsen, B., & Luther, D. (2012). High summer temperature explains bill size variation in salt marsh sparrows. Ecography, 35(2), 146-152. doi:10.1111/j.1600-0587.2011.07002.xGreenberg, R., & Danner, R. M. (2012). THE INFLUENCE OF THE CALIFORNIA MARINE LAYER ON BILL SIZE IN A GENERALIST SONGBIRD. Evolution, 66(12), 3825-3835. doi:10.1111/j.1558-5646.2012.01726.xBallentine, B., & Greenberg, R. (2010). Common Garden Experiment Reveals Genetic Control of Phenotypic Divergence between Swamp Sparrow Subspecies That Lack Divergence in Neutral Genotypes. PLoS ONE, 5(4), e10229. doi:10.1371/journal.pone.001022

    The great tit HapMap project: A continental‐scale analysis of genomic variation in a songbird

    Get PDF
    A major aim of evolutionary biology is to understand why patterns of genomic diversity vary within taxa and space. Large‐scale genomic studies of widespread species are useful for studying how environment and demography shape patterns of genomic divergence. Here, we describe one of the most geographically comprehensive surveys of genomic variation in a wild vertebrate to date; the great tit (Parus major) HapMap project. We screened ca 500,000 SNP markers across 647 individuals from 29 populations, spanning ~30 degrees of latitude and 40 degrees of longitude – almost the entire geographical range of the European subspecies. Genome‐wide variation was consistent with a recent colonisation across Europe from a South‐East European refugium, with bottlenecks and reduced genetic diversity in island populations. Differentiation across the genome was highly heterogeneous, with clear ‘islands of differentiation’, even among populations with very low levels of genome‐wide differentiation. Low local recombination rates were a strong predictor of high local genomic differentiation (FST), especially in island and peripheral mainland populations, suggesting that the interplay between genetic drift and recombination causes highly heterogeneous differentiation landscapes. We also detected genomic outlier regions that were confined to one or more peripheral great tit populations, probably as a result of recent directional selection at the species' range edges. Haplotype‐based measures of selection were related to recombination rate, albeit less strongly, and highlighted population‐specific sweeps that likely resulted from positive selection. Our study highlights how comprehensive screens of genomic variation in wild organisms can provide unique insights into spatio‐temporal evolutionary dynamics

    Similar dispersal patterns between two closely related birds with contrasting migration strategies

    Full text link
    Studying dispersal is crucial to understand metapopulation and sink-source dynamics and invasion processes. The capability to disperse is especially important for species living in fragmented habitats like wetlands. We investigated the distribution of natal and breeding dispersal distances and philopatry in Spanish populations of two closely related reedbed-nesting birds, the Moustached Warbler Acrocephalus melanopogon and the Eurasian Reed Warbler Acrocephalus scirpaceus. These warblers are morphologically very similar, but differ in migration strategy and, in our study area, in population size. Our aims were to find the best model for dispersal distances and to assess the occurrence of intra- or interspecific differences in dispersal patterns. We used ringing data from the Spanish marking scheme and selected recaptures to avoid including migrating individuals. In both species, most individuals were philopatric but dispersing birds were able to cross large distances (up to more than 100 km), suggesting the capability to compensate for habitat fragmentation. We found the heavy-tailed Cauchy distribution to be the best conceptual description for our data, in all cases but natal dispersal of Moustached Warblers. Among Eurasian Reed Warblers, natal philopatry was lower than breeding philopatry. We found no significant interspecific differences. This does not confirm the hypothesis of higher dispersal ability in long distance migrants (like Eurasian Reed Warblers) than in resident/short distance migrant bird species (like Moustached Warblers). The similarity in dispersal patterns among the two warblers may be explained by their close phylogenetic relatedness, similar constraints imposed on both species by a patchy habitat or similar evolutionary pressures.We are grateful to the many ringers who collected the data during years of fieldwork in Spain. Francesco Ceresa is supported by an "Atraent talent'' grant from the University of Valencia.Ceresa, F.; Belda, E.; Monrós González, JS. (2016). Similar dispersal patterns between two closely related birds with contrasting migration strategies. Population Ecology. 58(3):421-427. doi:10.1007/s10144-016-0547-0S421427583Banco de datos de anillamiento del remite ICONA – Ministerio de Medio Ambiente (2015) Datos de anillamiento y recuperaciones en España. Ministerio de Agricultura, Alimentación y Medio Ambiente, SEO/BirdLife, ICO, EBD-CSIC y GOB. Madrid (in Spanish)Begon M, Townsend CR, Harper JL (2006) Ecology: from individual to ecosystems, 4th edn. Blackwell Publishing, OxfordBlomqvist D, Fessl B, Hoi H, Kleindorfer S (2005) High frequency of extra-pair fertilisation in the moustached warbler, a songbird with a variable breeding system. Behaviour 142:1133–1148Bohonak AJ (1999) Dispersal, gene flow, and population structure. Q Rev Biol 74:21–45Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical information-theoretic approach. Springer Verlag, New YorkCantos FJ, Tellería JL (1994) Stopover site fidelity of four migrant warblers in the Iberian Peninsula. J Avian Biol 25:131–134Carrascal LM, Palomino D (2008) Las aves comunes reproductoras en España. Población en 2004–2006. SEO/BirdLife, Madrid (in Spanish with English abstract)Carrascal LM, Weykam S, Palomino D, Lobo JM, Díaz L (2005) Atlas Virtual de las Aves Terrestres de España. http://www.vertebradosibericos.org/atlasaves.html . Accessed 16 Feb 2016Castany J (2003) El carricerín real (Acrocephalus melanopogon) en el P. N. del Prat de Cabanes-Torreblanca. Doctoral thesis. University of Valencia, Valencia (in Spanish)Castany J, López G (2006) El carricerín real en España. I Censo Nacional (2005). SEO/BirdLife, Madrid (in Spanish with English abstract)Ceresa F, Belda EJ, Kvist L, Rguibi-Idrissi H, Monrós JS (2015) Does fragmentation of wetlands affect gene flow in sympatric Acrocephalus warblers with different migration strategies? J Avian Biol 46:577–588Cooper NW, Murphy MT, Redmond LJ, Dolan AC (2009) Density-dependent age at first reproduction in the eastern kingbird. Oikos 118:413–419Delignette-Muller ML, Dutang C (2015) fitdistrplus: An R Package for fitting distributions. J Stat Softw 64:1–34. http://www.jstatsoft.org/v64/i04/ . Accessed 2 Sep 2015Frankham R, Ballou JD, Briscoe DA (2010) Introduction to conservation genetics, 2nd edn. Cambridge University Press, CambridgeHengeveld R (1994) Small step invasion research. Trends Ecol Evol 9:339–342Hodges MF Jr, Krementz DG (1996) Neotropical migratory breeding bird communities in riparian forests of different widths along the Altamaha River, Georgia. Wilson Bulletin 108:496–506Ibrahim KM, Nichols RA, Hewitt GM (1996) Spatial patterns of genetic variation generated by different forms of dispersal during range expansion. Heredity 77:282–291Kennerley P, Pearson D (2010) Reed and bush warblers. Christopher Helm Publishers Ltd., LondonKoenig WD, Van Vuren D, Hooge PN (1996) Detectability, philopatry, and the distribution of dispersal distances in vertebrates. Trends Ecol Evol 11:514–517Kralj J, Procházka P, Fainová D, Patzenhauerová H, Tutiš V (2010) Intraspecific variation in the wing shape and genetic differentiation of reed warblers Acrocephalus scirpaceus in Croatia. Acta Ornithologica 45:51–58Lambrechts MM, Blondel J, Caizergues A, Dias PC, Pradol R, Thomas DW (1999) Will estimates of lifetime recruitment of breeding offspring on small-scale study plots help us to quantify processes underlying adaptation? Oikos 86:147–151Machtans CS, Villard MA, Hannon SJ (1996) Use of riparian buffer strips as movement corridors by forest birds. Conserv Biol 10:1366–1379Nathan R, Perry G, Cronin JT, Strand AE, Cain ML (2003) Methods for estimating long-distance dispersal. Oikos 103:261–273Newton I (1992) Experiments on the limitation of bird numbers by territorial behaviour. Biol Rev 67:129–173Norberg UM (1990) Vertebrate flight, mechanics, physiology, morphology, ecology and evolution. Springer Verlag, BerlinParacuellos M, Tellería JL (2004) Factors affecting the distribution of a waterbird community: the role of habitat configuration and bird abundance. Waterbirds 27:446–453Paradis E, Baillie SR, Sutherland WJ, Gregory RD (1998) Patterns of natal and breeding dispersal in birds. J Anim Ecol 67:518–536Paradis E, Baillie SR, Sutherland WJ (2002) Modeling large-scale dispersal distances. Ecol Model 151:279–292Peirò IG (2003) Intraspecific variation in the wing shape of the long-distance migrant Reed Warbler Acrocephalus scirpaceus: effects of age and distance of migration. Ardeola 50:31–37Plissner JH, Gowaty PA (1996) Patterns of natal dispersal, turnover, and dispersal costs in eastern bluebirds. Anim Behav 51:1307–1322Procházka P, Stokke BG, Jensen H, Fainová D, Bellinvia E, Fossøy F, Vikan JR, Bryja J, Soler M (2011) Low genetic differentiation among reed warbler Acrocephalus scirpaceus populations across Europe. J Avian Biol 42:103–113R Core Team (2014) R: A language and environment for statistical computing. R foundation for statistical computing, ViennaRobinson WD (1999) Long-term changes in the avifauna of Barro Colorado Island, Panama, a tropical forest isolate. Conserv Biol 13:85–97SEO/BirdLife (2016a) Acrocephalus melanopogon. Anillamientos por década. http://www.anillamientoseo.org/ . Accessed 19 Feb 2016 (in Spanish)SEO/BirdLife (2016b) Acrocephalus scirpaceus. Anillamientos por década. http://www.anillamientoseo.org/ . Accessed 19 Feb 2016 (in Spanish)Shigesada N, Kawasaki K, Takeda Y (1995) Modeling stratified diffusion in biological invasions. Am Nat 146:229–251Silva JP, Phillips L, Jones W, Eldridge J, O’Hara E (2007) Life and Europe’s wetlands, restoring a vital ecosystem. Office for Official Publications of the European Communities, LuxembourgSutherland GD, Harestad AS, Price K, Lertzman KP (2000) Scaling of natal dispersal distances in terrestrial birds and mammals. Conservation ecology 4:16. http://www.consecol.org/vol4/iss1/art16 . Accessed 23 Oct 2015Vadász C, Német Á, Karcza Z, Loránt M, Biró C, Csörgő T (2008) Study on breeding site fidelity of Acrocephalus Warblers in Central Hungary. Acta Zool Acad Sci H 54(Suppl. 1):167–175Van Houtan KS, Pimm SL, Halley JM, Bierregaard RO Jr, Lovejoy TE (2007) Dispersal of Amazonian birds in continuous and fragmented forest. Ecol Lett 10:219–229Van Houtan KS, Bass OL Jr, Lockwood J, Pimm SL (2010) Importance of estimating dispersal for endangered bird management. Conservation Letters 3:260–266Van Vessem J, Hecker N, Tucker GM (1997) Inland wetlands. In: Tucker GM, Evans MI (eds) Habitats for birds in Europe: A conservation strategy for the wider environment. BirdLife Conservation Series 6. BirdLife International, Cambridge, pp 125–158Waser PM, Creel SR, Lucas JR (1994) Death and disappearance: estimating mortality risk associated with philopatry and dispersal. Behav Ecol 5:135–141Willis EO (1974) Populations and local extinctions of birds on Barro Colorado Island, Panama. Ecol Monogr 44:153–169Winkler DW, Wrege PH, Allen PE, Kast TL, Senesac P, Wasson MF, Llambías PE, Ferretti V, Sullivan PJ (2004) Breeding dispersal and philopatry in the tree swallow. Condor 106:768–776Winkler DW, Wrege PH, Allen PE, Kast TL, Senesac P, Wasson MF, Sullivan PJ (2005) The natal dispersal of tree swallows in a continuous mainland environment. J Anim Ecol 74:1080–109

    Tree-based ensembles unveil the microhabitat suitability for the invasive bleak (Alburnus alburnus L.) and pumpkinseed (Lepomis gibbosus L.): Introducing XGBoost to eco-informatics

    Full text link
    [EN] Random Forests (RFs) and Gradient Boosting Machines (GBMs) are popular approaches for habitat suitability modelling in environmental flow assessment. However, both present some limitations theoretically solved by alternative tree-based ensemble techniques (e.g. conditional RFs or oblique RFs). Among them, eXtreme Gradient Boosting machines (XGBoost) has proven to be another promising technique that mixes subroutines developed for RFs and GBMs. To inspect the capabilities of these alternative techniques, RFs and GBMs were compared with: conditional RFs, oblique RFs and XGBoost by modelling, at the micro-scale, the habitat suitability for the invasive bleak (Alburnus alburnus L.) and pumpkinseed (Lepomis gibbosus L). XGBoost outperformed the other approaches, particularly conditional and oblique RFs, although there were no statistical differences with standard RFs and GBMs. The partial dependence plots highlighted the lacustrine origins of pumpkinseed and the preference for lentic habitats of bleak. However, the latter depicted a larger tolerance for rapid microhabitats found in run-type river segments, which is likely to hinder the management of flow regimes to control its invasion. The difference in the computational burden and, especially, the characteristics of datasets on microhabitat use (low data prevalence and high overlapping between categories) led us to conclude that, in the short term, XGBoost is not destined to replace properly optimised RFs and GBMs in the process of habitat suitability modelling at the micro-scale.This project had the support of Fundacion Biodiversidad, of Spanish Ministry for Ecological Transition. We want to thank the volunteering students of the Universitat Politecnica de Valencia, Marina de Miguel, Carlos A. Puig-Mengual, Cristina Barea, Rares Hugianu, and Pau Rodriguez. R. Munoz-Mas benefitted from a postdoctoral Juan de la Cierva fellowship from the Spanish Ministry of Science, Innovation and Universities (ref. FJCI-2016-30829). This research was supported by the Government of Catalonia (ref. 2017 SGR 548).Muñoz-Mas, R.; Gil-Martínez, E.; Oliva-Paterna, FJ.; Belda, E.; Martinez-Capel, F. (2019). Tree-based ensembles unveil the microhabitat suitability for the invasive bleak (Alburnus alburnus L.) and pumpkinseed (Lepomis gibbosus L.): Introducing XGBoost to eco-informatics. Ecological Informatics. 53:1-12. https://doi.org/10.1016/j.ecoinf.2019.100974S1125

    Low but contrasting neutral genetic differentiation shaped by winter temperature in European great tits

    Get PDF
    Gene flow is usually thought to reduce genetic divergence and impede local adaptation by homogenising gene pools between populations. However, evidence for local adaptation and phenotypic differentiation in highly mobile species, experiencing high levels of gene flow, is emerging. Assessing population genetic structure at different spatial scales is thus a crucial step towards understanding mechanisms underlying intraspecific differentiation and diversification. Here, we studied the population genetic structure of a highly mobile species – the great tit Parus major – at different spatial scales. We analysed 884 individuals from 30 sites across Europe including 10 close-by sites (< 50 km), using 22 microsatellite markers. Overall we found a low but significant genetic differentiation among sites (FST = 0.008). Genetic differentiation was higher, and genetic diversity lower, in south-western Europe. These regional differences were statistically best explained by winter temperature. Overall, our results suggest that great tits form a single patchy metapopulation across Europe, in which genetic differentiation is independent of geographical distance and gene flow may be regulated by environmental factors via movements related to winter severity. This might have important implications for the evolutionary trajectories of sub-populations, especially in the context of climate change, and calls for future investigations of local differences in costs and benefits of philopatry at large scales

    The great tit HapMap project: a continental‐scale analysis of genomic variation in a songbird

    Get PDF
    A major aim of evolutionary biology is to understand why patterns of genomic diversity vary within taxa and space. Large-scale genomic studies of widespread species are useful for studying how environment and demography shape patterns of genomic divergence. Here, we describe one of the most geographically comprehensive surveys of genomic variation in a wild vertebrate to date; the great tit (Parus major) HapMap project. We screened ca 500,000 SNP markers across 647 individuals from 29 populations, spanning ~30 degrees of latitude and 40 degrees of longitude – almost the entire geographical range of the European subspecies. Genome-wide variation was consistent with a recent colonisation across Europe from a South-East European refugium, with bottlenecks and reduced genetic diversity in island populations. Differentiation across the genome was highly heterogeneous, with clear ‘islands of differentiation’, even among populations with very low levels of genome-wide differentiation. Low local recombination rates were a strong predictor of high local genomic differentiation (FST), especially in island and peripheral mainland populations, suggesting that the interplay between genetic drift and recombination causes highly heterogeneous differentiation landscapes. We also detected genomic outlier regions that were confined to one or more peripheral great tit populations, probably as a result of recent directional selection at the species' range edges. Haplotype-based measures of selection were related to recombination rate, albeit less strongly, and highlighted population-specific sweeps that likely resulted from positive selection. Our study highlights how comprehensive screens of genomic variation in wild organisms can provide unique insights into spatio-temporal evolutionary dynamics

    Priorities for Mediterranean marine turtle conservation and management in the face of climate change

    Get PDF
    As climate-related impacts threaten marine biodiversity globally, it is important to adjust conservation efforts to mitigate the effects of climate change. Translating scientific knowledge into practical management, however, is often complicated due to resource, economic and policy constraints, generating a knowledge-action gap. To develop potential solutions for marine turtle conservation, we explored the perceptions of key actors across 18 countries in the Mediterranean. These actors evaluated their perceived relative importance of 19 adaptation and mitigation measures that could safeguard marine turtles from climate change. Of importance, despite differences in expertise, experience and focal country, the perceptions of researchers and management practitioners largely converged with respect to prioritizing adaptation and mitigation measures. Climate change was considered to have the greatest impacts on offspring sex ratios and suitable nesting sites. The most viable adaptation/mitigation measures were considered to be reducing other pressures that act in parallel to climate change. Ecological effectiveness represented a key determinant for implementing proposed measures, followed by practical applicability, financial cost, and societal cost. This convergence in opinions across actors likely reflects long-standing initiatives in the Mediterranean region towards supporting knowledge exchange in marine turtle conservation. Our results provide important guidance on how to prioritize measures that incorporate climate change in decision-making processes related to the current and future management and protection of marine turtles at the ocean-basin scale, and could be used to guide decisions in other regions globally. Importantly, this study demonstrates a successful example of how interactive processes can be used to fill the knowledge-action gap between research and management.This work was conducted under FutureMares EU project that received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 869300. The Mediterranean Marine Turtle Working Group was established in 2017 and is continuously supported by MedPAN and the National Marine Park of Zakynthos. The work of AC was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the “First Call for H.F.R.I. Research Projects to support Faculty members and Researchers and the procurement of high-cost research equipment grant” (Project Number: 2340).Peer reviewe
    corecore