211 research outputs found

    Особливості формування самостійної пізнавальної діяльності майбутніх учителів математики

    Get PDF
    (uk) У статті зроблено спробу розкрити особливості самостійної пізнавальної діяльності майбутніх вчителів; досліджуються різні підходи до цього поняття; розкриваються такі його складові, як самостійність, пізнавальна самостійність, пізнавальна діяльність.(ru) В статье сделана попытка раскрыть особенности самостоятельной познавательной деятельности будущих учителей; исследуются различные подходы к этому понятию; раскрываются такие его составляющие, как самостоятельность, познавательная самостоятельность, познавательная деятельность

    A Comparative Analysis of Mitochondrial Genomes in Coleoptera (Arthropoda: Insecta) and Genome Descriptions of Six New Beetles

    Get PDF
    Coleoptera is the most diverse group of insects with over 360,000 described species divided into four suborders: Adephaga, Archostemata, Myxophaga, and Polyphaga. In this study, we present six new complete mitochondrial genome (mtgenome) descriptions, including a representative of each suborder, and analyze the evolution of mtgenomes from a comparative framework using all available coleopteran mtgenomes. We propose a modification of atypical cox1 start codons based on sequence alignment to better reflect the conservation observed across species as well as findings of TTG start codons in other genes. We also analyze tRNA-Ser(AGN) anticodons, usually GCU in arthropods, and report a conserved UCU anticodon as a possible synapomorphy across Polyphaga. We further analyze the secondary structure of tRNA-Ser(AGN) and present a consensus structure and an updated covariance model that allows tRNAscan-SE (via the COVE software package) to locate and fold these atypical tRNAs with much greater consistency. We also report secondary structure predictions for both rRNA genes based on conserved stems. All six species of beetle have the same gene order as the ancestral insect. We report noncoding DNA regions, including a small gap region of about 20 bp between tRNA-Ser(UCN) and nad1 that is present in all six genomes, and present results of a base composition analysis

    RNA-Seq improves annotation of protein-coding genes in the cucumber genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As more and more genomes are sequenced, genome annotation becomes increasingly important in bridging the gap between sequence and biology. Gene prediction, which is at the center of genome annotation, usually integrates various resources to compute consensus gene structures. However, many newly sequenced genomes have limited resources for gene predictions. In an effort to create high-quality gene models of the cucumber genome (<it>Cucumis sativus </it>var. <it>sativus</it>), based on the EVidenceModeler gene prediction pipeline, we incorporated the massively parallel complementary DNA sequencing (RNA-Seq) reads of 10 cucumber tissues into EVidenceModeler. We applied the new pipeline to the reassembled cucumber genome and included a comparison between our predicted protein-coding gene sets and a published set.</p> <p>Results</p> <p>The reassembled cucumber genome, annotated with RNA-Seq reads from 10 tissues, has 23, 248 identified protein-coding genes. Compared with the published prediction in 2009, approximately 8, 700 genes reveal structural modifications and 5, 285 genes only appear in the reassembled cucumber genome. All the related results, including genome sequence and annotations, are available at <url>http://cmb.bnu.edu.cn/Cucumis_sativus_v20/</url>.</p> <p>Conclusions</p> <p>We conclude that RNA-Seq greatly improves the accuracy of prediction of protein-coding genes in the reassembled cucumber genome. The comparison between the two gene sets also suggests that it is feasible to use RNA-Seq reads to annotate newly sequenced or less-studied genomes.</p

    Exploiting Oxytricha trifallax nanochromosomes to screen for non-coding RNA genes

    Get PDF
    We took advantage of the unusual genomic organization of the ciliate Oxytricha trifallax to screen for eukaryotic non-coding RNA (ncRNA) genes. Ciliates have two types of nuclei: a germ line micronucleus that is usually transcriptionally inactive, and a somatic macronucleus that contains a reduced, fragmented and rearranged genome that expresses all genes required for growth and asexual reproduction. In some ciliates including Oxytricha, the macronuclear genome is particularly extreme, consisting of thousands of tiny ‘nanochromosomes’, each of which usually contains only a single gene. Because the organism itself identifies and isolates most of its genes on single-gene nanochromosomes, nanochromosome structure could facilitate the discovery of unusual genes or gene classes, such as ncRNA genes. Using a draft Oxytricha genome assembly and a custom-written protein-coding genefinding program, we identified a subset of nanochromosomes that lack any detectable protein-coding gene, thereby strongly enriching for nanochromosomes that carry ncRNA genes. We found only a small proportion of non-coding nanochromosomes, suggesting that Oxytricha has few independent ncRNA genes besides homologs of already known RNAs. Other than new members of known ncRNA classes including C/D and H/ACA snoRNAs, our screen identified one new family of small RNA genes, named the Arisong RNAs, which share some of the features of small nuclear RNAs

    Clustering of Codons with Rare Cognate tRNAs in Human Genes Suggests an Extra Level of Expression Regulation

    Get PDF
    In species with large effective population sizes, highly expressed genes tend to be encoded by codons with highly abundant cognate tRNAs to maximize translation rate. However, there has been little evidence for a similar bias of synonymous codons in highly expressed human genes. Here, we ask instead whether there is evidence for the selection for codons associated with low abundance tRNAs. Rather than averaging the codon usage of complete genes, we scan the genes for windows with deviating codon usage. We show that there is a significant over representation of human genes that contain clusters of codons with low abundance cognate tRNAs. We name these regions, which on average have a 50% reduction in the amount of cognate tRNA available compared to the remainder of the gene, RTS (rare tRNA score) clusters. We observed a significant reduction in the substitution rate between the human RTS clusters and their orthologous chimp sequence, when compared to non–RTS cluster sequences. Overall, the genes with an RTS cluster have higher tissue specificity than the non–RTS cluster genes. Furthermore, these genes are functionally enriched for transcription regulation. As genes that regulate transcription in lower eukaryotes are known to be involved in translation on demand, this suggests that the mechanism of translation level expression regulation also exists within the human genome

    Molecular Phylogeny Restores the Supra-Generic Subdivision of Homoscleromorph Sponges (Porifera, Homoscleromorpha)

    Get PDF
    Homoscleromorpha is the fourth major sponge lineage, recently recognized to be distinct from the Demospongiae. It contains <100 described species of exclusively marine sponges that have been traditionally subdivided into 7 genera based on morphological characters. Because some of the morphological features of the homoscleromorphs are shared with eumetazoans and are absent in other sponges, the phylogenetic position of the group has been investigated in several recent studies. However, the phylogenetic relationships within the group remain unexplored by modern methods.Here we describe the first molecular phylogeny of Homoscleromorpha based on nuclear (18S and 28S rDNA) and complete mitochondrial DNA sequence data that focuses on inter-generic relationships. Our results revealed two robust clades within this group, one containing the spiculate species (genera Plakina, Plakortis, Plakinastrella and Corticium) and the other containing aspiculate species (genera Oscarella and Pseudocorticium), thus rejecting a close relationship between Pseudocorticium and Corticium. Among the spiculate species, we found affinities between the Plakortis and Plakinastrella genera, and between the Plakina and Corticium. The validity of these clades is furthermore supported by specific morphological characters, notably the type of spicules. Furthermore, the monophyly of the Corticium genus is supported while the monophyly of Plakina is not.As the result of our study we propose to restore the pre-1995 subdivision of Homoscleromorpha into two families: Plakinidae Schulze, 1880 for spiculate species and Oscarellidae Lendenfeld, 1887 for aspiculate species that had been rejected after the description of the genus Pseudocorticium. We also note that the two families of homoscleromorphs exhibit evolutionary stable, but have drastically distinct mitochondrial genome organizations that differ in gene content and gene order

    CloVR: A virtual machine for automated and portable sequence analysis from the desktop using cloud computing

    Get PDF
    Next-generation sequencing technologies have decentralized sequence acquisition, increasing the demand for new bioinformatics tools that are easy to use, portable across multiple platforms, and scalable for high-throughput applications. Cloud computing platforms provide on-demand access to computing infrastructure over the Internet and can be used in combination with custom built virtual machines to distribute pre-packaged with pre-configured software. We describe the Cloud Virtual Resource, CloVR, a new desktop application for push-button automated sequence analysis that can utilize cloud computing resources. CloVR is implemented as a single portable virtual machine (VM) that provides several automated analysis pipelines for microbial genomics, including 16S, whole genome and metagenome sequence analysis. The CloVR VM runs on a personal computer, utilizes local computer resources and requires minimal installation, addressing key challenges in deploying bioinformatics workflows. In addition CloVR supports use of remote cloud computing resources to improve performance for large-scale sequence processing. In a case study, we demonstrate the use of CloVR to automatically process next-generation sequencing data on multiple cloud computing platforms. The CloVR VM and associated architecture lowers the barrier of entry for utilizing complex analysis protocols on both local single- and multi-core computers and cloud systems for high throughput data processing.https://doi.org/10.1186/1471-2105-12-35
    corecore