15 research outputs found

    Imaging the 2013 explosive crater excavation and new dome formation at Volcán de Colima with TerraSAR-X, time-lapse cameras and modelling

    Get PDF
    The summit region of steep volcanoes hosting lava domes often displays rapid geomorphologic and structural changes, which are important for monitoring the source region of hazards. Explosive crater excavation is often followed by new lava-dome growth, which is one of the most dynamic morphometric changes that may occur at volcanoes. However, details of these crater formations, and the ensuing new dome growth remain poorly studied. A common problem is the lack of observational data due to hazardous field access and the limited resolution of satellite remote sensing techniques. This paper describes the destructive-constructive crater activity at Volcán de Colima, Mexico, which occurred between January and March 2013. The crater geometry and early dome formation were observed through a combination of high-resolution TerraSAR-X spotmode satellite radar images and permanently installed monitoring cameras. This combined time-lapse imagery was used to identify ring-shaped gas emissions prior to the explosion and to distinguish between the sequential explosion and crater excavation stages, which were followed by dome growth. By means of particle image velocimetry, the digital flow field is computed from consecutive camera images, showing that vertical dome growth is dominant at the beginning. The upward growth is found to grade into spreading and a lateral growth domain. After approximately two months of gradually filling the excavated craters with new magma, the dome overflows the western margin of the crater and develops into a flow that produces block and ash flow hazards. We discuss and compare the observations to discrete element models, allowing us to mimic the vertical and lateral growth history of the dome and to estimate the maximum strength of the bulk rock mass. Moreover, our results allow a discussion on the controls of a critical dome height that may be reached prior to its gravitational spreading

    Hydrothermal alteration of andesitic lava domes can lead to explosive volcanic behaviour

    Get PDF
    Dome-forming volcanoes are among the most hazardous volcanoes on Earth. Magmatic outgassing can be hindered if the permeability of a lava dome is reduced, promoting pore pressure augmentation and explosive behaviour. Laboratory data show that acid-sulphate alteration, common to volcanoes worldwide, can reduce the permeability on the sample lengthscale by up to four orders of magnitude and is the result of pore- and microfracture-filling mineral precipitation. Calculations using these data demonstrate that intense alteration can reduce the equivalent permeability of a dome by two orders of magnitude, which we show using numerical modelling to be sufficient to increase pore pressure. The fragmentation criterion shows that the predicted pore pressure increase is capable of fragmenting the majority of dome-forming materials, thus promoting explosive volcanism. It is crucial that hydrothermal alteration, which develops over months to years, is monitored at dome-forming volcanoes and is incorporated into real-time hazard assessments

    Current Wildland Fire Patterns and Challenges in Europe: A Synthesis of National Perspectives

    Get PDF
    Changes in climate, land use, and land management impact the occurrence and severity of wildland fires in many parts of the world. This is particularly evident in Europe, where ongoing changes in land use have strongly modified fire patterns over the last decades. Although satellite data by the European Forest Fire Information System provide large-scale wildland fire statistics across European countries, there is still a crucial need to collect and summarize in-depth local analysis and understanding of the wildland fire condition and associated challenges across Europe. This article aims to provide a general overview of the current wildland fire patterns and challenges as perceived by national representatives, supplemented by national fire statistics (2009–2018) across Europe. For each of the 31 countries included, we present a perspective authored by scientists or practitioners from each respective country, representing a wide range of disciplines and cultural backgrounds. The authors were selected from members of the COST Action “Fire and the Earth System: Science & Society” funded by the European Commission with the aim to share knowledge and improve communication about wildland fire. Where relevant, a brief overview of key studies, particular wildland fire challenges a country is facing, and an overview of notable recent fire events are also presented. Key perceived challenges included (1) the lack of consistent and detailed records for wildland fire events, within and across countries, (2) an increase in wildland fires that pose a risk to properties and human life due to high population densities and sprawl into forested regions, and (3) the view that, irrespective of changes in management, climate change is likely to increase the frequency and impact of wildland fires in the coming decades. Addressing challenge (1) will not only be valuable in advancing national and pan-European wildland fire management strategies, but also in evaluating perceptions (2) and (3) against more robust quantitative evidence
    corecore