1,918 research outputs found

    Leakage Assessment of Pressure-Exchange Wave Rotors

    Get PDF
    Control of leakage within wave rotors is recognized as a key requirement for efficient operation. Previous studies suggest that experimentally observed performance degradation is substantially due to flow leakage. This work presents a leakage model for predicting leakage-attributed performance degradation of four-port pressure-exchange wave rotors more accurately than previous single-cavity leakage models. The methodology comprehensively considers the leakage paths of the entire device. It combines a wave-rotor quasi-one-dimensional computational fluid dynamics prediction code, experimentally validated for internal gas dynamics with the generalized flow-circuit-modeling capability of a leakage-flow network solver. The computational fluid dynamics program and the network solver step through a series of iterations by sharing common leakage information. Application to a well-instrumented wave-rotor rig is briefly summarized, providing important guidance for the improvement of leakage and performance. The new approach is anticipated to be useful in enhancing the design, operation, and efficiency of a broad class of wave rotors by better understanding leakage and hence designing sealing features to control leakage flows

    Giant Anharmonic Phonon Scattering in PbTe

    Full text link
    Understanding the microscopic processes affecting the bulk thermal conductivity is crucial to develop more efficient thermoelectric materials. PbTe is currently one of the leading thermoelectric materials, largely thanks to its low thermal conductivity. However, the origin of this low thermal conductivity in a simple rocksalt structure has so far been elusive. Using a combination of inelastic neutron scattering measurements and first-principles computations of the phonons, we identify a strong anharmonic coupling between the ferroelectric transverse optic (TO) mode and the longitudinal acoustic (LA) modes in PbTe. This interaction extends over a large portion of reciprocal space, and directly affects the heat-carrying LA phonons. The LA-TO anharmonic coupling is likely to play a central role in explaining the low thermal conductivity of PbTe. The present results provide a microscopic picture of why many good thermoelectric materials are found near a lattice instability of the ferroelectric type

    Event-related alpha suppression in response to facial motion

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.While biological motion refers to both face and body movements, little is known about the visual perception of facial motion. We therefore examined alpha wave suppression as a reduction in power is thought to reflect visual activity, in addition to attentional reorienting and memory processes. Nineteen neurologically healthy adults were tested on their ability to discriminate between successive facial motion captures. These animations exhibited both rigid and non-rigid facial motion, as well as speech expressions. The structural and surface appearance of these facial animations did not differ, thus participants decisions were based solely on differences in facial movements. Upright, orientation-inverted and luminance-inverted facial stimuli were compared. At occipital and parieto-occipital regions, upright facial motion evoked a transient increase in alpha which was then followed by a significant reduction. This finding is discussed in terms of neural efficiency, gating mechanisms and neural synchronization. Moreover, there was no difference in the amount of alpha suppression evoked by each facial stimulus at occipital regions, suggesting early visual processing remains unaffected by manipulation paradigms. However, upright facial motion evoked greater suppression at parieto-occipital sites, and did so in the shortest latency. Increased activity within this region may reflect higher attentional reorienting to natural facial motion but also involvement of areas associated with the visual control of body effectors. © 2014 Girges et al

    Polycrystalline ZrTe5 Parametrized as a Narrow-Band-Gap Semiconductor for Thermoelectric Performance

    Get PDF
    The transition-metal pentatellurides HfTe 5 and ZrTe 5 have been studied for their exotic transport properties with much debate over the transport mechanism, band gap, and cause of the resistivity behavior, including a large low-temperature resistivity peak. Single crystals grown by the chemical-vapor-transport method have shown an n − p transition of the Seebeck coefficient at the same temperature as a peak in the resistivity. We show that behavior similar to that of single crystals can be observed in iodine-doped polycrystalline samples but that undoped polycrystalline samples exhibit drastically different properties: they are p type over the entire temperature range. Additionally, the thermal conductivity for polycrystalline samples is much lower, 1.5     Wm − 1     K − 1 , than previously reported for single crystals. It is found that the polycrystalline ZrTe 5 system can be modeled as a simple semiconductor with conduction and valence bands both contributing to transport, separated by a band gap of 20 meV. This model demonstrates to first order that a simple two-band model can explain the transition from n - to p -type behavior and the cause of the anomalous resistivity peak. Combined with the experimental data, the two-band model shows that carrier concentration variation is responsible for differences in behavior between samples. Using the two-band model, the thermoelectric performance at different doping levels is predicted, finding z T = 0.2 and 0.1 for p and n type, respectively, at 300 K, and z T = 0.23 and 0.32 for p and n type at 600 K. Given the reasonably high z T that is comparable in magnitude for both n and p type, a thermoelectric device with a single compound used for both legs is feasible

    Cooperation of Sumoylated Chromosomal Proteins in rDNA Maintenance

    Get PDF
    SUMO is a posttranslational modifier that can modulate protein activities, interactions, and localizations. As the GFP-Smt3p fusion protein has a preference for subnucleolar localization, especially when deconjugation is impaired, the nucleolar role of SUMO can be the key to its biological functions. Using conditional triple SUMO E3 mutants, we show that defects in sumoylation impair rDNA maintenance, i.e., the rDNA segregation is defective and the rDNA copy number decreases in these mutants. Upon characterization of sumoylated proteins involved in rDNA maintenance, we established that Top1p and Top2p, which are sumoylated by Siz1p/Siz2p, most likely collaborate with substrates of Mms21p to maintain rDNA integrity. Cohesin and condensin subunits, which both play important roles in rDNA stability and structures, are potential substrates of Mms21, as their sumoylation depends on Mms21p, but not Siz1p and Siz2p. In addition, binding of cohesin and condensin to rDNA is altered in the mms21-CH E3-deficient mutant

    The Human Tumor Atlas Network: Charting Tumor Transitions across Space and Time at Single-Cell Resolution

    Get PDF
    Crucial transitions in cancer—including tumor initiation, local expansion, metastasis, and therapeutic resistance—involve complex interactions between cells within the dynamic tumor ecosystem. Transformative single-cell genomics technologies and spatial multiplex in situ methods now provide an opportunity to interrogate this complexity at unprecedented resolution. The Human Tumor Atlas Network (HTAN), part of the National Cancer Institute (NCI) Cancer Moonshot Initiative, will establish a clinical, experimental, computational, and organizational framework to generate informative and accessible three-dimensional atlases of cancer transitions for a diverse set of tumor types. This effort complements both ongoing efforts to map healthy organs and previous large-scale cancer genomics approaches focused on bulk sequencing at a single point in time. Generating single-cell, multiparametric, longitudinal atlases and integrating them with clinical outcomes should help identify novel predictive biomarkers and features as well as therapeutically relevant cell types, cell states, and cellular interactions across transitions. The resulting tumor atlases should have a profound impact on our understanding of cancer biology and have the potential to improve cancer detection, prevention, and therapeutic discovery for better precision-medicine treatments of cancer patients and those at risk for cancer

    Evaluation of Sexual Communication Message Strategies

    Get PDF
    Parent-child communication about sex is an important proximal reproductive health outcome. But while campaigns to promote it such as the Parents Speak Up National Campaign (PSUNC) have been effective, little is known about how messages influence parental cognitions and behavior. This study examines which message features explain responses to sexual communication messages

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
    corecore