60 research outputs found

    Dynamical models with a general anisotropy profile

    Full text link
    Both numerical simulations and observational evidence indicate that the outer regions of galaxies and dark matter haloes are typically mildly to significantly radially anisotropic. The inner regions can be significantly non-isotropic, depending on the dynamical formation and evolution processes. In an attempt to break the lack of simple dynamical models that can reproduce this behaviour, we explore a technique to construct dynamical models with an arbitrary density and an arbitrary anisotropy profile. We outline a general construction method and propose a more practical approach based on a parameterized anisotropy profile. This approach consists of fitting the density of the model with a set of dynamical components, each of which have the same anisotropy profile. Using this approach we avoid the delicate fine-tuning difficulties other fitting techniques typically encounter when constructing radially anisotropic models. We present a model anisotropy profile that generalizes the Osipkov-Merritt profile, and that can represent any smooth monotonic anisotropy profile. Based on this model anisotropy profile, we construct a very general seven-parameter set of dynamical components for which the most important dynamical properties can be calculated analytically. We use the results to look for simple one-component dynamical models that generate simple potential-density pairs while still supporting a flexible anisotropy profile. We present families of Plummer and Hernquist models in which the anisotropy at small and large radii can be chosen as free parameters. We also generalize these two families to a three-parameter family that self-consistently generates the set of Veltmann potential-density pairs. (Abridged...)Comment: 18 pages, accepted for publication in A&

    Clues on the Physical Origin of the Fundamental Plane from Self-consistent Hydrodynamical Simulations

    Full text link
    We report on a study of the parameters characterizing the mass and velocity distributions of two samples of relaxed elliptical-like objects (ELOs) identified, at z=0, in a set of self-consistent hydrodynamical simulations operating in the context of a concordance cosmological model. Star formation (SF) has been phenomenologically implemented in the simulations in the framework of the turbulent sequential scenario through a threshold gas density and an efficiency parameter. Each ELO sample is characterized by the values these parameters take. We have found that the (logarithms of the) ELO stellar masses, projected stellar half-mass radii, and stellar central line-of-sight (LOS) velocity dispersions define dynamical fundamental planes (FPs). Zero points depend on the particular values that the SF parameters take, while slopes do not change. The ELO samples have been found to show systematic trends with the mass scale in both the relative content and the relative distributions of the baryonic and the dark mass ELO components. The physical origin of these trends lies in the systematic decrease, with increasing ELO mass, of the relative dissipation experienced by the baryonic mass component along ELO mass assembly, resulting in a tilt of the dynamical FP relative to the virial plane. The dynamical FPs shown by the two ELO samples are consistent with that shown by the SDSS elliptical sample in the same variables, with no further need for any relevant contribution from stellar population effects to explain the observed tilt. These effects could, however, have contributed to the scatter of the observed FP, as the dynamical FPs have been found to be thinner than the observed one. The results we report on hint, for the first time, at a possible way to understand the tilt of the observed FP in a cosmological context.Comment: 12 pages, 1 figure. Accepted to Astrophysical Journal Letter

    The impact of baryonic physics on the structure of dark matter haloes: the view from the FIRE cosmological simulations

    Get PDF
    We study the distribution of cold dark matter (CDM) in cosmological simulations from the FIRE (Feedback In Realistic Environments) project, for M_* ∌ 10^(4–11) M_⊙ galaxies in M_h ∌ 10^(9–12) M_⊙ haloes. FIRE incorporates explicit stellar feedback in the multiphase interstellar medium, with energetics from stellar population models. We find that stellar feedback, without ‘fine-tuned’ parameters, greatly alleviates small-scale problems in CDM. Feedback causes bursts of star formation and outflows, altering the DM distribution. As a result, the inner slope of the DM halo profile (α) shows a strong mass dependence: profiles are shallow at M_h ∌ 10^(10)–10^(11) M_⊙ and steepen at higher/lower masses. The resulting core sizes and slopes are consistent with observations. This is broadly consistent with previous work using simpler feedback schemes, but we find steeper mass dependence of α, and relatively late growth of cores. Because the star formation efficiency M_*/M_h is strongly halo mass dependent, a rapid change in α occurs around M_h ∌ 10^(10) M_⊙ (M_* ∌ 10^6–10^7 M_⊙), as sufficient feedback energy becomes available to perturb the DM. Large cores are not established during the period of rapid growth of haloes because of ongoing DM mass accumulation. Instead, cores require several bursts of star formation after the rapid build-up has completed. Stellar feedback dramatically reduces circular velocities in the inner kpc of massive dwarfs; this could be sufficient to explain the ‘Too Big To Fail’ problem without invoking non-standard DM. Finally, feedback and baryonic contraction in Milky Way-mass haloes produce DM profiles slightly shallower than the Navarro–Frenk–White profile, consistent with the normalization of the observed Tully–Fisher relation

    Two-dimensional kinematics of SLACS lenses: III. Mass structure and dynamics of early-type lens galaxies beyond z ~ 0.1

    Get PDF
    We combine in a self-consistent way the constraints from both gravitational lensing and stellar kinematics to perform a detailed investigation of the internal mass distribution, amount of dark matter, and dynamical structure of the 16 early-type lens galaxies from the SLACS Survey, at z = 0.08 - 0.33, for which both HST/ACS and NICMOS high-resolution imaging and VLT VIMOS IFU spectroscopy are available. Based on this data set, we analyze the inner regions of the galaxies, i.e. typically within one (3D) effective radius r_e, under the assumption of axial symmetry and by constructing dynamical models supported by two-integral stellar DFs. For all systems, the total mass density distribution is found to be well approximated by a simple power-law: this profile is on average slightly super-isothermal, with a logarithmic slope = 2.074^{+0.043}_{-0.041} (68% CL) and an intrinsic scatter 0.144^{+0.055}_{-0.014}, and is fairly round, with an average axial ratio = 0.77+/-0.04. The lower limit for the dark matter fraction (fDM) inside r_e ranges, in individual systems, from nearly zero to almost a half, with a median value of 12%. By including stellar masses derived from SPS models with a Salpeter IMF, we obtain an average fDM = 31%. The fDM rises to 61% if, instead, a Chabrier IMF is assumed. For both IMFs, the dark matter fraction increases with the total mass of the galaxy (3-sigma correlation). Based on the intrinsic angular momentum parameter calculated from our models, we find that the galaxies can be divided into two dynamically distinct groups, which are shown to correspond to the usual classes of the slow and fast rotators. Overall, the SLACS systems are structurally and dynamically very similar to their nearby counterparts, indicating that the inner regions of early-type galaxies have undergone little, if any, evolution since redshift z ~ 0.35. (Abridged)Comment: 27 pages, 34 figures. MNRAS, in pres

    Kinematic properties of early-type galaxy haloes using planetary nebulae

    Get PDF
    We present new planetary nebulae (PNe) positions, radial velocities, and magnitudes for 6 early-type galaxies obtained with the Planetary Nebulae Spectrograph, their two-dimensional velocity and velocity dispersion fields. We extend this study to include an additional 10 early-type galaxies with PNe radial velocity measurements available from the literature, to obtain a broader description of the outer-halo kinematics in early-type galaxies. These data extend the information derived from stellar kinematics to typically up to ~8 Re. The combination of photometry, stellar and PNe kinematics shows: i) good agreement between the PNe number density and the stellar surface brightness in the region where the two data sets overlap; ii) good agreement between PNe and stellar kinematics; iii) that the mean rms velocity profiles fall into two groups: with of the galaxies characterized by slowly decreasing profiles and the remainder having steeply falling profiles; iv) a larger variety of velocity dispersion profiles; v) that twists and misalignments in the velocity fields are more frequent at large radii, including some fast rotators; vi) that outer haloes are characterised by more complex radial profiles of the specific angular momentum-related lambda_R parameter than observed within 1Re; vii) that many objects are more rotationally dominated at large radii than in their central parts; and viii) that the halo kinematics are correlated with other galaxy properties, such as total luminosity, isophotal shape, total stellar mass, V/sigma, and alpha parameter, with a clear separation between fast and slow rotators.Comment: 36 pages, 21 figures, revised version for MNRA

    The PN.S Elliptical Galaxy Survey: the dark matter in NGC 4494

    Get PDF
    We present new Planetary Nebula Spectrograph observations of the ordinary elliptical galaxy NGC 4494, resulting in positions and velocities of 255 PNe out to 7 effective radii (25 kpc). We also present new wide-field surface photometry from MMT/Megacam, and long-slit stellar kinematics from VLT/FORS2. The spatial and kinematical distributions of the PNe agree with the field stars in the region of overlap. The mean rotation is relatively low, with a possible kinematic axis twist outside 1 Re. The velocity dispersion profile declines with radius, though not very steeply, down to ~70 km/s at the last data point. We have constructed spherical dynamical models of the system, including Jeans analyses with multi-component LCDM-motivated galaxies as well as logarithmic potentials. These models include special attention to orbital anisotropy, which we constrain using fourth-order velocity moments. Given several different sets of modelling methods and assumptions, we find consistent results for the mass profile within the radial range constrained by the data. Some dark matter (DM) is required by the data; our best-fit solution has a radially anisotropic stellar halo, a plausible stellar mass-to-light ratio, and a DM halo with an unexpectedly low central density. We find that this result does not substantially change with a flattened axisymmetric model. Taken together with other results for galaxy halo masses, we find suggestions for a puzzling pattern wherein most intermediate-luminosity galaxies have very low concentration halos, while some high-mass ellipticals have very high concentrations. We discuss some possible implications of these results for DM and galaxy formation.Comment: 29 pages, 17 figures. MNRAS, accepte

    Corrosion behaviour of Mg–Zn–Y–Mischmetal alloys in phosphate buffer saline solution

    Full text link
    The influence of the processing route and chemical composition in the corrosion behaviour of two Mg-Zn-Y-Mischmetal alloys has been evaluated in phosphate buffer saline solution. The corrosion resistance of the alloy processed by conventional techniques was substantially higher than that found for the same alloy processed from atomised powders. Fine homogeneous distribution of the second-phase particles promoted severe attack due to the enhanced number of galvanic microcells. A higher concentration of zinc and a lower content of rare earth additions improved the corrosion resistance of the alloys due to the lower volume fraction of second-phase particles. © 2012 Elsevier Ltd.Peer Reviewe
    • 

    corecore