769 research outputs found

    Hadron Structure on the Lattice

    Full text link
    A few chosen nucleon properties are described from a lattice QCD perspective: the nucleon sigma term and the scalar strangeness in the nucleon; the vector form factors in the nucleon, including the vector strangeness contribution, as well as parity breaking effects like the anapole and electric dipole moment; and finally the axial and tensor charges of the nucleon. The status of the lattice calculations is presented and their potential impact on phenomenology is discussed.Comment: 17 pages, 9 figures; proceedings of the Conclusive Symposium of the Collaborative Research Center 443 "Many-body structure of strongly interacting systems", Mainz, February 23-25, 201

    Star Formation and Dynamics in the Galactic Centre

    Full text link
    The centre of our Galaxy is one of the most studied and yet enigmatic places in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre (GC) is the ideal environment to study the extreme processes that take place in the vicinity of a supermassive black hole (SMBH). Despite the hostile environment, several tens of early-type stars populate the central parsec of our Galaxy. A fraction of them lie in a thin ring with mild eccentricity and inner radius ~0.04 pc, while the S-stars, i.e. the ~30 stars closest to the SMBH (<0.04 pc), have randomly oriented and highly eccentric orbits. The formation of such early-type stars has been a puzzle for a long time: molecular clouds should be tidally disrupted by the SMBH before they can fragment into stars. We review the main scenarios proposed to explain the formation and the dynamical evolution of the early-type stars in the GC. In particular, we discuss the most popular in situ scenarios (accretion disc fragmentation and molecular cloud disruption) and migration scenarios (star cluster inspiral and Hills mechanism). We focus on the most pressing challenges that must be faced to shed light on the process of star formation in the vicinity of a SMBH.Comment: 68 pages, 35 figures; invited review chapter, to be published in expanded form in Haardt, F., Gorini, V., Moschella, U. and Treves, A., 'Astrophysical Black Holes'. Lecture Notes in Physics. Springer 201

    Small-scale solar magnetic fields

    Get PDF
    As we resolve ever smaller structures in the solar atmosphere, it has become clear that magnetism is an important component of those small structures. Small-scale magnetism holds the key to many poorly understood facets of solar magnetism on all scales, such as the existence of a local dynamo, chromospheric heating, and flux emergence, to name a few. Here, we review our knowledge of small-scale photospheric fields, with particular emphasis on quiet-sun field, and discuss the implications of several results obtained recently using new instruments, as well as future prospects in this field of research.Comment: 43 pages, 18 figure

    Origin and Evolution of Saturn's Ring System

    Full text link
    The origin and long-term evolution of Saturn's rings is still an unsolved problem in modern planetary science. In this chapter we review the current state of our knowledge on this long-standing question for the main rings (A, Cassini Division, B, C), the F Ring, and the diffuse rings (E and G). During the Voyager era, models of evolutionary processes affecting the rings on long time scales (erosion, viscous spreading, accretion, ballistic transport, etc.) had suggested that Saturn's rings are not older than 100 My. In addition, Saturn's large system of diffuse rings has been thought to be the result of material loss from one or more of Saturn's satellites. In the Cassini era, high spatial and spectral resolution data have allowed progress to be made on some of these questions. Discoveries such as the ''propellers'' in the A ring, the shape of ring-embedded moonlets, the clumps in the F Ring, and Enceladus' plume provide new constraints on evolutionary processes in Saturn's rings. At the same time, advances in numerical simulations over the last 20 years have opened the way to realistic models of the rings's fine scale structure, and progress in our understanding of the formation of the Solar System provides a better-defined historical context in which to understand ring formation. All these elements have important implications for the origin and long-term evolution of Saturn's rings. They strengthen the idea that Saturn's rings are very dynamical and rapidly evolving, while new arguments suggest that the rings could be older than previously believed, provided that they are regularly renewed. Key evolutionary processes, timescales and possible scenarios for the rings's origin are reviewed in the light of tComment: Chapter 17 of the book ''Saturn After Cassini-Huygens'' Saturn from Cassini-Huygens, Dougherty, M.K.; Esposito, L.W.; Krimigis, S.M. (Ed.) (2009) 537-57

    Intercalibration of the barrel electromagnetic calorimeter of the CMS experiment at start-up

    Get PDF
    Calibration of the relative response of the individual channels of the barrel electromagnetic calorimeter of the CMS detector was accomplished, before installation, with cosmic ray muons and test beams. One fourth of the calorimeter was exposed to a beam of high energy electrons and the relative calibration of the channels, the intercalibration, was found to be reproducible to a precision of about 0.3%. Additionally, data were collected with cosmic rays for the entire ECAL barrel during the commissioning phase. By comparing the intercalibration constants obtained with the electron beam data with those from the cosmic ray data, it is demonstrated that the latter provide an intercalibration precision of 1.5% over most of the barrel ECAL. The best intercalibration precision is expected to come from the analysis of events collected in situ during the LHC operation. Using data collected with both electrons and pion beams, several aspects of the intercalibration procedures based on electrons or neutral pions were investigated

    Defect-mediated ferromagnetism in ZnO:Mn nanorods

    Get PDF
    In this work, the structural, chemical and magnetic properties of ZnO:Mn nanorods were investigated. Firstly, well-aligned ZnO nanorods with their long axis parallel to the crystalline c-axis were successfully grown by the vapor phase transport technique on Si substrates coated with a ZnO buffer layer. Mn metal was then diffused into these nanorods at different temperatures in vacuum. From SEM results, ZnO:Mn nanorods were observed to have diameters of ~100 nm and lengths of 4 Âľm. XPS analysis showed that the Mn dopant substituted into the ZnO matrix with a valence state of +2. Magnetic measurements performed at room temperature revealed that undoped ZnO nanorods exhibit ferromagnetic behavior which may be related to oxygen vacancy defect-mediated d0 ferromagnetism. ZnO:Mn samples were seen to show an excess room temperature ferromagnetism that is attributed to the presence of oxygen vacancy defects forming bound magnetic polarons involving Mn

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    The adolescent and young adult (AYA) horizon study: An AYA cancer survivorship cohort

    Get PDF
    Background: In the United States, >45,000 adolescent and young adult (AYA) women are diagnosed with cancer annually. Reproductive issues are critically important to AYA cancer survivors, but insufficient information is available to address their concerns. The AYA Horizon Study was initiated to contribute high-quality, contemporary evidence on reproductive outcomes for female cancer survivors in the United States. Methods: The study cohort includes women diagnosed with lymphoma, breast, melanoma, thyroid, or gynecologic cancer (the five most common cancers among women ages 15–39 years) at three study sites: the state of North Carolina and the Kaiser Permanente health systems in Northern and Southern California. Detailed information on cancer treatment, fertility procedures, and pregnancy (e.g., miscarriage, live birth) and birth (e.g., birth weight, gestational length) outcomes are leveraged from state cancer registries, health system databases and administrative insurance claims, national data on assisted reproductive technology procedures, vital records, and survey data. Results: We identified a cohort of 11,072 female AYA cancer survivors that includes >1,200 African American women, >1,400 Asian women, >1,600 Medicaid enrollees, and >2,500 Hispanic women using existing data sources. Active response to the survey component was low overall (N ¼ 1,679), and notably lower among minority groups compared with non-Hispanic white women. Conclusions: Passive data collection through linkage reduces participant burden and prevents systematic cohort attrition or potential selection biases that can occur with active participation requirements. Impact: The AYA Horizon study will inform survivorship planning as fertility and parenthood gain increasing recognition as key aspects of high-quality cancer care
    • …
    corecore