186 research outputs found

    In situ monitoring of corrosion processes by coupled micro-XRF/micro-XRD mapping to understand the degradation mechanisms of reinforcing bars in hydraulic binders from historic monuments

    Get PDF
    International audienceHistoric monuments have been partly built since antiquity with iron or steel reinforcements sealed in mortars or hydraulic binders. But the presence of chloride in the environment can weaken the structures due to the corrosion of these metallic parts, leading to the cracking of the binder. In this context, in order to better understand the first steps of these corrosion mechanisms a chemical cell was designed to operate in situ analyses of the phases precipitated when a chlorinated solution is introduced in the vicinity of the bar. The chemical and structural characterization (micro-XRF and micro-XRD respectively) was performed under synchrotron radiation at the SOLEIL-DiffAbs beamline. Moreover, complementary SEM-EDS analyses were carried out before and after the in situ cell experiment in order to determine the final localisation of the corrosion products inside the crack network. The results show that iron can spread up to 1 mm away from the metallic bar inside the pores of the binder after 44 h of corrosion. Moreover, in accordance with laboratory experiments conducted in solution in the presence of Fe2+ and Cl- ions the reaction pathways conduct to the successive formation of an intermediate Fe(ii)-Fe(iii) chlorinated green rust which transforms into ferric oxyhydroxides such as akaganeite or goethite depending on the local concentration of iron

    Environmental impact of early Basque mining and smelting recorded in a high ash minerogenic peat deposit

    Get PDF
    International audienceMore than four metres of core, covering almost 5000 years of deposition, were collected in a high ash minerogenic peat deposit located in the High Aldudes valley (Basque country), an area well known for its mineral abundance, exploited from Roman Times at least.Although minerogenic peatlands are not generally considered as the best archives to reconstruct past atmospheric metal deposition history, lead isotopic geochemistry demonstrates the integrity of the Pb record at least within the three upper meters; that is to say over the last four millennia.Zn, Cd and Cumay have been widely redistributed either by biological cycling, advective groundwater movements, or diffusional processes.Anthr opogenic lead input phases are clearly pinpointed by positive shifts in PbySc ratios with concomitant sharp drops in 206Pby207Pb ratios.They are often accompanied by significant declines in tree taxa, interpreted as increasing demand for wood to supply energy for local mining andyor metallurgical operations.Periods of mining andyor smelting activity are identified during Antiquity and Modern Times, and are also confirmed by textual and field evidence.Inputs from the Rio Tinto (Southern Spain), often invoked as a major lead contributor to the European atmosphere during Roman Times, were not detected here.This remote source was probably masked by local inputs. Other mining andyor smelting phases, only suspected by archaeologists, are here identified as early as the Bronze Age.Although the durations of these phases are possibly overestimated because of detrital inputs consequent to the release of lead from polluted soils over a long period of time after major pollutant inputs, the periods at which pollution peaks occur are in good agreement with archaeological knowledge and palaeo-botanical data.Thecombination of geochemical and palaeo-botanical techniques with field archaeology, therefore provides a powerful tool in studying the interaction of early human societies with their environment, as regards early mining and smelting

    The Multifunctional Sorting Protein PACS-2 Controls Mitophagosome Formation in Human Vascular Smooth Muscle Cells through Mitochondria-ER Contact Sites.

    Get PDF
    Mitochondria-associated ER membranes (MAMs) are crucial for lipid transport and synthesis, calcium exchange, and mitochondrial functions, and they also act as signaling platforms. These contact sites also play a critical role in the decision between autophagy and apoptosis with far reaching implications for cell fate. Vascular smooth muscle cell (VSMC) apoptosis accelerates atherogenesis and the progression of advanced lesions, leading to atherosclerotic plaque vulnerability and medial degeneration. Though the successful autophagy of damaged mitochondria promotes VSMC survival against pro-apoptotic atherogenic stressors, it is unknown whether MAMs are involved in VSMC mitophagy processes. Here, we investigated the role of the multifunctional MAM protein phosphofurin acidic cluster sorting protein 2 (PACS-2) in regulating VSMC survival following a challenge by atherogenic lipids. Using high-resolution confocal microscopy and proximity ligation assays, we found an increase in MAM contacts as in PACS-2-associated MAMs upon stimulation with atherogenic lipids. Correspondingly, the disruption of MAM contacts by PACS-2 knockdown impaired mitophagosome formation and mitophagy, thus potentiating VSMC apoptosis. In conclusion, our data shed new light on the significance of the MAM modulatory protein PACS-2 in vascular cell physiopathology and suggest MAMs may be a new target to modulate VSMC fate and favor atherosclerotic plaque stability

    Assessment of trace metal contamination in a historical freshwater canal (Buckingham Canal), Chennai, India

    Get PDF
    The present study was done to assess the sources and the major processes controlling the trace metal distribution in sediments of Buckingham Canal. Based on the observed geochemical variations, the sediments are grouped as South Buckingham Canal and North Buckingham Canal sediments (SBC and NBC, respectively). SBC sediments show enrichment in Fe, Ti, Mn, Cr, V, Mo, and As concentrations, while NBC sediments show enrichment in Sn, Cu, Pb, Zn, Ni, and Hg. The calculated Chemical Index of Alteration and Chemical Index of Weathering values for all the sediments are relatively higher than the North American Shale Composite and Upper Continental Crust but similar to Post-Archaean Average Shale, and suggest a source area with moderate weathering. Overall, SBC sediments are highly enriched in Mo, Zn, Cu, and Hg (geoaccumulation index (Igeo) class 4– 6), whereas NBC sediments are enriched in Sn, Cu,Zn, and Hg (Igeo class 4–6). Cu, Ni, and Cr show higher than Effects-Range Median values and hence the biological adverse effect of these metals is 20%; Zn, which accounts for 50%, in the NBC sediments, has a more biological adverse effect than other metalsfound in these sediments. The calculated Igeo, Enrichment Factor, and Contamination Factor values indicate that Mo, Hg, Sn, Cu, and Zn are highly enriched in the Buckingham Canal sediments, suggesting the rapid urban and industrial development of Chennai MetropolitanCity have negatively influenced on the surrounding aquatic ecosystem

    The biogeochemical impact of glacial meltwater from Southwest Greenland

    Get PDF
    Biogeochemical cycling in high-latitude regions has a disproportionate impact on global nutrient budgets. Here, we introduce a holistic, multi-disciplinary framework for elucidating the influence of glacial meltwaters, shelf currents, and biological production on biogeochemical cycling in high-latitude continental margins, with a focus on the silica cycle. Our findings highlight the impact of significant glacial discharge on nutrient supply to shelf and slope waters, as well as surface and benthic production in these regions, over a range of timescales from days to thousands of years. Whilst biological uptake in fjords and strong diatom activity in coastal waters maintains low dissolved silicon concentrations in surface waters, we find important but spatially heterogeneous additions of particulates into the system, which are transported rapidly away from the shore. We expect the glacially-derived particles – together with biogenic silica tests – to be cycled rapidly through shallow sediments, resulting in a strong benthic flux of dissolved silicon. Entrainment of this benthic silicon into boundary currents may supply an important source of this key nutrient into the Labrador Sea, and is also likely to recirculate back into the deep fjords inshore. This study illustrates how geochemical and oceanographic analyses can be used together to probe further into modern nutrient cycling in this region, as well as the palaeoclimatological approaches to investigating changes in glacial meltwater discharge through time, especially during periods of rapid climatic change in the Late Quaternary

    Harmful Elements in Estuarine and Coastal Systems

    Get PDF
    Estuaries and coastal zones are dynamic transitional systems which provide many economic and ecological benefits to humans, but also are an ideal habitat for other organisms as well. These areas are becoming contaminated by various anthropogenic activities due to a quick economic growth and urbanization. This chapter explores the sources, chemical speciation, sediment accumulation and removal mechanisms of the harmful elements in estuarine and coastal seawaters. It also describes the effects of toxic elements on aquatic flora and fauna. Finally, the toxic element pollution of the Venice Lagoon, a transitional water body located in the northeastern part of Italy, is discussed as a case study, by presenting the procedures adopted to measure the extent of the pollution, the impacts on organisms and the restoration activities

    Osmoregulation, immunolocalization of Na+/K+-ATPase, and ultrastructure of branchial epithelia in the developing brown shrimp, Crangon crangon (Decapoda, Caridea)

    Get PDF
    Aspects of osmoregulation including salinity tolerance, osmoregulatory capacity, location of transporting epithelia, and the expression of the enzyme Na+/K+-ATPase were investigated in the developing brown shrimp, Crangon crangon (L.), from the North Sea. Early developmental stages and large juveniles were exposed to a wide range of salinities, for measurement of hemolymph osmolality and survival rates. In media ranging from 17.0 to 32.2 , salinity tolerance was generally high (survival rates: 70-100 %) in all developmental stages, but it decreased in media <10.2 . Zoeal stages and decapodids slightly hyper-regulated at 17.0 and osmoconformed in media ?25.5 . At 10.2 , these stages showed high mortality, and only juveniles survived at 5.3 . Juveniles hyper-regulated at 10.2 and 17.0 , osmoconformed at 25.5 , and hypo-regulated in media ?32.2 . Large juveniles hyper-regulated also at 5.3 . Expression of the Na+/K+-ATPase and ion-transporting cells were located through immunofluorescence microscopy and transmission electron microscopy. In zoeae I and VI, a strong immunoreactivity was observed in cells of the inner epithelia of the branchiostegites and in epithelial cells lining the pleurae. Their ultrastructure showed typical features of ion-transporting cells. In decapodids and juveniles, ionocytes and expression of Na+/K+-ATPase remained located in the branchiostegite epithelium, but they disappeared from the pleurae and appeared in the epipodites. In large juveniles, the cells of the gill shaft showed positive immunolabeling and ultrastructural features of ionocytes. In summary, the adult pattern of osmoregulation in C. crangon is accomplished after metamorphosis from a moderately hyper-osmoconforming decapodid to an effectively hyper-/hypo-regulating juvenile stage. Salinity tolerance and osmoregulatory capacity are closely correlated with the development of ion-transporting cells and the expression of Na+/K+-ATPase
    corecore