4,766 research outputs found

    Current approaches for combination therapy of cancer: The role of immunogenic cell death

    Get PDF
    Cell death resistance is a key feature of tumor cells. One of the main anticancer therapies is increasing the susceptibility of cells to death. Cancer cells have developed a capability of tumor immune escape. Hence, restoring the immunogenicity of cancer cells can be suggested as an effective approach against cancer. Accumulating evidence proposes that several anticancer agents provoke the release of danger-associated molecular patterns (DAMPs) that are determinants of immunogenicity and stimulate immunogenic cell death (ICD). It has been suggested that ICD inducers are two different types according to their various activities. Here, we review the well-characterized DAMPs and focus on the different types of ICD inducers and recent combination therapies that can augment the immunogenicity of cancer cells

    Dual Spikes; New Spiky String Solutions

    Full text link
    We find a new class of spiky solutions for closed strings in flat, AdS3AdS5AdS_3\subset AdS_5 and R×S2(S5)R\times S^2(\subset S^5) backgrounds. In the flat case the new solutions turn out to be T-dual configurations of spiky strings found by Kruczenski hep-th/0410226. In the case of solutions living in AdSAdS, we make a semi classical analysis by taking the large angular momentum limit. The anomalous dimension for these dual spikes is similar to that for rotating and pulsating circular strings in AdS with angular momentum playing the role of the level number. This replaces the well known logarithmic dependence for spinning strings. For the dual spikes living on sphere we find that no large angular momentum limit exists.Comment: Added reference

    On Supergravity Solutions of Branes in Melvin Universes

    Full text link
    We study supergravity solutions of type II branes wrapping a Melvin universe. These solutions provide the gravity description of non-commutative field theories with non-constant non-commutative parameter. Typically these theories are non-supersymmetric, though they exhibit some feature of their corresponding supersymmetric theories. An interesting feature of these non-commutative theories is that there is a critical length in the theory in which for distances larger than this length the effects of non-commutativity become important and for smaller distances these effects are negligible. Therefore we would expect to see this kind of non-commutativity in large distances which might be relevant in cosmology. We also study M5-brane wrapping on 11-dimensional Melvin universe and its descendant theories upon compactifying on a circle.Comment: 25 pages, latex file; v2: typos corrected, Refs. adde

    Semi-classical Probe Strings on Giant Gravitons Backgrounds

    Full text link
    In the first part of this paper we study two Z2Z_2 symmetries of the LLM metric, both of which exchange black and white regions. One of them which can be interpreted as the particle-hole symmetry is the symmetry of the whole supergravity solution while the second one is just the symmetry of the metric and changes the sign of the fivefrom flux. In the second part of the paper we use closed string probes and their semi-classical analysis to compare the two 1/2 BPS deformations of AdS5×S5AdS_5\times S^5, the smooth LLM geometry which contains localized giant gravitons and the superstar case which is a solution with naked singularity corresponding to smeared giants. We discuss the realization of the Z2Z_2 symmetry in the semi-classical closed string probes point of view.Comment: 29 pages, 6 .eps figures; v2: References adde

    The expression pattern of VISTA in the PBMCs of relapsing-remitting multiple sclerosis patients: A single-cell RNA sequencing-based study

    Get PDF
    Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS). Dysregulated immune responses have been implicated in MS development. Growing evidence has indicated that inhibitory immune checkpoint molecules can substantially regulate immune responses and maintain immune tolerance. V-domain Ig suppressor of T cell activation (VISTA) is a novel inhibitory immune checkpoint molecule that can suppress immune responses; however, its expression pattern in the peripheral blood mononuclear cells (PBMCs) of relapsing-remitting multiple sclerosis (RRMS) has not thoroughly been studied. Herein, we evaluated Vsir expression in PBMCs of RRMS patients and characterized the expression pattern of the Vsir in the PBMCs of MS patients. Besides, we investigated the effect of fingolimod, IFNβ-1α, glatiramer acetate (GA), and dimethyl fumarate (DMF) on Vsir expression in PBMCs of RRMS patients. Our results have shown that Vsir expression is significantly downregulated in the PBMCs of patients with RRMS. Besides, the single-cell RNA sequencing results have demonstrated that Vsir expression is downregulated in classical monocyte, intermediate monocytes, non-classical monocytes, myeloid DCs (mDC), Plasmacytoid dendritic cells (pDCs), and naive B-cells of PBMCs of MS patients compared to the control. In addition, DMF, IFNβ-1α, and GA have significantly upregulated Vsir expression in the PBMCs of RRMS patients. Collectively, the current study has shed light on Vsir expression in the PBMCs of MS patients; however, further studies are needed to elucidate the significance of VISTA in the mentioned immune cells

    Multi-Messenger Astronomy with Extremely Large Telescopes

    Get PDF
    The field of time-domain astrophysics has entered the era of Multi-messenger Astronomy (MMA). One key science goal for the next decade (and beyond) will be to characterize gravitational wave (GW) and neutrino sources using the next generation of Extremely Large Telescopes (ELTs). These studies will have a broad impact across astrophysics, informing our knowledge of the production and enrichment history of the heaviest chemical elements, constrain the dense matter equation of state, provide independent constraints on cosmology, increase our understanding of particle acceleration in shocks and jets, and study the lives of black holes in the universe. Future GW detectors will greatly improve their sensitivity during the coming decade, as will near-infrared telescopes capable of independently finding kilonovae from neutron star mergers. However, the electromagnetic counterparts to high-frequency (LIGO/Virgo band) GW sources will be distant and faint and thus demand ELT capabilities for characterization. ELTs will be important and necessary contributors to an advanced and complete multi-messenger network.Comment: White paper submitted to the Astro2020 Decadal Surve

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV
    corecore