383 research outputs found
Accuracy of circular polarization as a measure of spin polarization in quantum dot qubits
A quantum dot spin LED provides a test of carrier spin injection into a
qubit, as well as a means of analyzing carrier spin injection in general and
local spin polarization. The polarization of the observed light is, however,
significantly influenced by the dot geometry so the spin may be more polarized
than the emitted light would naively suggest. We have calculated carrier
polarization-dependent optical matrix elements using 8-band strain-dependent
k.p theory for InAs/GaAs self-assembled quantum dots (SAQDs) for electron and
hole spin injection into a range of quantum dot sizes and shapes, and for
arbitrary emission directions. The observed circular polarization does not
depend on whether the injected spin-polarized carriers are electrons or holes,
but is strongly influenced by the SAQD geometry and emission direction.
Calculations for typical SAQD geometries with emission along [110] show light
that is only ~5% circularly polarized for spin states that are 100% polarized
along [110]. Therefore observed polarizations [Chye et al. PRB 66, 201301(R)]
of ~1% imply a spin polarization within the dot of ~20%. We also find that
measuring along the growth direction gives near unity conversion of spin to
photon polarization, and is the least sensitive to uncertainties in SAQD
geometry.Comment: 4 pages, 6 figure
All-electrical detection of the relative strength of Rashba and Dresselhaus spin-orbit interaction in quantum wires
We propose a method to determine the relative strength of Rashba and
Dresselhaus spin-orbit interaction from transport measurements without the need
of fitting parameters. To this end, we make use of the conductance anisotropy
in narrow quantum wires with respect to the directions of an in-plane magnetic
field, the quantum wire and the crystal orientation. We support our proposal by
numerical calculations of the conductance of quantum wires based on the
Landauer formalism which show the applicability of the method to a wide range
of parameters.Comment: 4 pages, 4 figure
Strong spin relaxation length dependence on electric field gradients
We discuss the influence of electrical effects on spin transport, and in
particular the propagation and relaxation of spin polarized electrons in the
presence of inhomogeneous electric fields. We show that the spin relaxation
length strongly depends on electric field gradients, and that significant
suppression of electron spin polarization can occur as a result thereof. A
discussion in terms of a drift-diffusion picture, and self-consistent numerical
calculations based on a Boltzmann-Poisson approach shows that the spin
relaxation length in fact can be of the order of the charge screening length.Comment: 4 pages, 3 figures, to be presented at PASPSI
Retrotransposon Silencing by DNA Methylation Can Drive Mammalian Genomic Imprinting
Among mammals, only eutherians and marsupials are viviparous and have genomic imprinting that leads to parent-of-origin-specific differential gene expression. We used comparative analysis to investigate the origin of genomic imprinting in mammals. PEG10 (paternally expressed 10) is a retrotransposon-derived imprinted gene that has an essential role for the formation of the placenta of the mouse. Here, we show that an orthologue of PEG10 exists in another therian mammal, the marsupial tammar wallaby (Macropus eugenii), but not in a prototherian mammal, the egg-laying platypus (Ornithorhynchus anatinus), suggesting its close relationship to the origin of placentation in therian mammals. We have discovered a hitherto missing link of the imprinting mechanism between eutherians and marsupials because tammar PEG10 is the first example of a differentially methylated region (DMR) associated with genomic imprinting in marsupials. Surprisingly, the marsupial DMR was strictly limited to the 5′ region of PEG10, unlike the eutherian DMR, which covers the promoter regions of both PEG10 and the adjacent imprinted gene SGCE. These results not only demonstrate a common origin of the DMR-associated imprinting mechanism in therian mammals but provide the first demonstration that DMR-associated genomic imprinting in eutherians can originate from the repression of exogenous DNA sequences and/or retrotransposons by DNA methylation
Spin-polarized current amplification and spin injection in magnetic bipolar transistors
The magnetic bipolar transistor (MBT) is a bipolar junction transistor with
an equilibrium and nonequilibrium spin (magnetization) in the emitter, base, or
collector. The low-injection theory of spin-polarized transport through MBTs
and of a more general case of an array of magnetic {\it p-n} junctions is
developed and illustrated on several important cases. Two main physical
phenomena are discussed: electrical spin injection and spin control of current
amplification (magnetoamplification). It is shown that a source spin can be
injected from the emitter to the collector. If the base of an MBT has an
equilibrium magnetization, the spin can be injected from the base to the
collector by intrinsic spin injection. The resulting spin accumulation in the
collector is proportional to , where is the proton
charge, is the bias in the emitter-base junction, and is the
thermal energy. To control the electrical current through MBTs both the
equilibrium and the nonequilibrium spin can be employed. The equilibrium spin
controls the magnitude of the equilibrium electron and hole densities, thereby
controlling the currents. Increasing the equilibrium spin polarization of the
base (emitter) increases (decreases) the current amplification. If there is a
nonequilibrium spin in the emitter, and the base or the emitter has an
equilibrium spin, a spin-valve effect can lead to a giant magnetoamplification
effect, where the current amplifications for the parallel and antiparallel
orientations of the the equilibrium and nonequilibrium spins differ
significantly. The theory is elucidated using qualitative analyses and is
illustrated on an MBT example with generic materials parameters.Comment: 14 PRB-style pages, 10 figure
Theory of spin-polarized bipolar transport in magnetic p-n junctions
The interplay between spin and charge transport in electrically and
magnetically inhomogeneous semiconductor systems is investigated theoretically.
In particular, the theory of spin-polarized bipolar transport in magnetic p-n
junctions is formulated, generalizing the classic Shockley model. The theory
assumes that in the depletion layer the nonequilibrium chemical potentials of
spin up and spin down carriers are constant and carrier recombination and spin
relaxation are inhibited. Under the general conditions of an applied bias and
externally injected (source) spin, the model formulates analytically carrier
and spin transport in magnetic p-n junctions at low bias. The evaluation of the
carrier and spin densities at the depletion layer establishes the necessary
boundary conditions for solving the diffusive transport equations in the bulk
regions separately, thus greatly simplifying the problem. The carrier and spin
density and current profiles in the bulk regions are calculated and the I-V
characteristics of the junction are obtained. It is demonstrated that spin
injection through the depletion layer of a magnetic p-n junction is not
possible unless nonequilibrium spin accumulates in the bulk regions--either by
external spin injection or by the application of a large bias. Implications of
the theory for majority spin injection across the depletion layer, minority
spin pumping and spin amplification, giant magnetoresistance, spin-voltaic
effect, biasing electrode spin injection, and magnetic drift in the bulk
regions are discussed in details, and illustrated using the example of a GaAs
based magnetic p-n junction.Comment: 36 pages, 11 figures, 2 table
Spintronics: Fundamentals and applications
Spintronics, or spin electronics, involves the study of active control and
manipulation of spin degrees of freedom in solid-state systems. This article
reviews the current status of this subject, including both recent advances and
well-established results. The primary focus is on the basic physical principles
underlying the generation of carrier spin polarization, spin dynamics, and
spin-polarized transport in semiconductors and metals. Spin transport differs
from charge transport in that spin is a nonconserved quantity in solids due to
spin-orbit and hyperfine coupling. The authors discuss in detail spin
decoherence mechanisms in metals and semiconductors. Various theories of spin
injection and spin-polarized transport are applied to hybrid structures
relevant to spin-based devices and fundamental studies of materials properties.
Experimental work is reviewed with the emphasis on projected applications, in
which external electric and magnetic fields and illumination by light will be
used to control spin and charge dynamics to create new functionalities not
feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes
from the published versio
Homozygosity Mapping on Homozygosity Haplotype Analysis to Detect Recessive Disease-Causing Genes from a Small Number of Unrelated, Outbred Patients
Genes involved in disease that are not common are often difficult to identify; a method that pinpoints them from a small number of unrelated patients will be of great help. In order to establish such a method that detects recessive genes identical-by-descent, we modified homozygosity mapping (HM) so that it is constructed on the basis of homozygosity haplotype (HM on HH) analysis. An analysis using 6 unrelated patients with Siiyama-type α1-antitrypsin deficiency, a disease caused by a founder gene, the correct gene locus was pinpointed from data of any 2 patients (length: 1.2–21.8 centimorgans, median: 1.6 centimorgans). For a test population in which these 6 patients and 54 healthy subjects were scrambled, the approach accurately identified these 6 patients and pinpointed the locus to a 1.4-centimorgan fragment. Analyses using synthetic data revealed that the analysis works well for IBD fragment derived from a most recent common ancestor (MRCA) who existed less than 60 generations ago. The analysis is unsuitable for the genes with a frequency in general population more than 0.1. Thus, HM on HH analysis is a powerful technique, applicable to a small number of patients not known to be related, and will accelerate the identification of disease-causing genes for recessive conditions
Spin dynamics in semiconductors
This article reviews the current status of spin dynamics in semiconductors
which has achieved a lot of progress in the past years due to the fast growing
field of semiconductor spintronics. The primary focus is the theoretical and
experimental developments of spin relaxation and dephasing in both spin
precession in time domain and spin diffusion and transport in spacial domain. A
fully microscopic many-body investigation on spin dynamics based on the kinetic
spin Bloch equation approach is reviewed comprehensively.Comment: a review article with 193 pages and 1103 references. To be published
in Physics Reports
- …