158 research outputs found

    Beneficial influence of nanocarbon on the aryliminopyridylnickel chloride catalyzed ethylene polymerization

    Get PDF
    A series of 1-aryliminoethylpyridine ligands (L1―L3) was synthesized by condensation of 2-acetylpyridine with 1-aminonaphthalene, 2-aminoanthracene or 1-aminopyrene, respectively. Reaction with nickel dichloride afforded the corresponding nickel (II) chloride complexes (Ni1–Ni3). All compounds were fully characterized and the molecular structures of Ni1 and Ni3 are reported. Upon activation with methylaluminoxane (MAO), all nickel complexes exhibit high activities for ethylene polymerization, producing waxes of low molecular weight and narrow polydispersity. The presence of multi-walled carbon nanotubes (MWCNTs) or few layer graphene (FLG) in the catalytic medium can lead to an increase of productivity associated to a modification of the polymer structure

    Widespread presence of direction-reversing neurons in the mouse visual system

    Get PDF
    Direction selectivity, the preference of motion in one direction over the opposite, is a fundamental property of visual neurons across species. We find that a substantial proportion of direction selective neurons in the mouse visual system reverse their preferred direction of motion in response to drifting gratings at different spatiotemporal parameters. A spatiotemporally asymmetric filter model recapitulates our experimental observations

    Widespread presence of direction-reversing neurons in the mouse visual system

    Get PDF
    Direction selectivity, the preference of motion in one direction over the opposite, is a fundamental property of visual neurons across species. We find that a substantial proportion of direction selective neurons in the mouse visual system reverse their preferred direction of motion in response to drifting gratings at different spatiotemporal parameters. A spatiotemporally asymmetric filter model recapitulates our experimental observations

    Evaluation of treatment response in adults with relapsing MOG-Ab-associated disease

    Get PDF
    Background: Myelin oligodendrocyte glycoprotein antibodies (MOG-Ab) are related to several acquired demyelinating syndromes in adults, but the therapeutic approach is currently unclear. We aimed to describe the response to different therapeutic strategies in adult patients with relapsing MOG-Ab-associated disease. Methods: This is a retrospective study conducted in France and Spain including 125 relapsing MOG-Ab patients aged ≥ 18 years. First, we performed a survival analysis to investigate the relapse risk between treated and non-treated patients, performing a propensity score method based on the inverse probability of treatment weighting. Second, we assessed the annualised relapse rates (ARR), Expanded Disability Status Scale (EDSS) and visual acuity pre-treatment and on/end-treatment. Results: Median age at onset was 34.1 years (range 18.0-67.1), the female to male ratio was 1.2:1, and 96% were Caucasian. At 5 years, 84% (95% confidence interval [CI], 77.1-89.8) patients relapsed. At the last follow-up, 66 (52.8%) received maintenance therapy. Patients initiating immunosuppressants (azathioprine, mycophenolate mophetil [MMF], rituximab) were at lower risk of new relapse in comparison to non-treated patients (HR, 0.41; 95CI%, 0.20-0.82; p = 0.011). Mean ARR (standard deviation) was reduced from 1.05(1.20) to 0.43(0.79) with azathioprine (n = 11; p = 0.041), from 1.20(1.11) to 0.23(0.60) with MMF (n = 11; p = 0.033), and from 1.08(0.98) to 0.43(0.89) with rituximab (n = 26; p = 0.012). Other immunosuppressants (methotrexate/mitoxantrone/cyclophosphamide; n = 5), or multiple sclerosis disease-modifying drugs (MS-DMD; n = 9), were not associated with significantly reduced ARR. Higher rates of freedom of EDSS progression were observed with azathioprine, MMF or rituximab. Conclusion: In adults with relapsing MOG-Ab-associated disease, immunosuppressant therapy (azathioprine, MMF and rituximab) is associated with reduced risk of relapse and better disability outcomes. Such an effect was not found in the few patients treated with MS-DMD

    Ionic Interactions in Biological and Physical Systems: a Variational Treatment

    Full text link
    Chemistry is about chemical reactions. Chemistry is about electrons changing their configurations as atoms and molecules react. Chemistry studies reactions as if they occurred in ideal infinitely dilute solutions. But most reactions occur in nonideal solutions. Then everything (charged) interacts with everything else (charged) through the electric field, which is short and long range extending to boundaries of the system. Mathematics has recently been developed to deal with interacting systems of this sort. The variational theory of complex fluids has spawned the theory of liquid crystals. In my view, ionic solutions should be viewed as complex fluids. In both biology and electrochemistry ionic solutions are mixtures highly concentrated (~10M) where they are most important, near electrodes, nucleic acids, enzymes, and ion channels. Calcium is always involved in biological solutions because its concentration in a particular location is the signal that controls many biological functions. Such interacting systems are not simple fluids, and it is no wonder that analysis of interactions, such as the Hofmeister series, rooted in that tradition, has not succeeded as one would hope. We present a variational treatment of hard spheres in a frictional dielectric. The theory automatically extends to spatially nonuniform boundary conditions and the nonequilibrium systems and flows they produce. The theory is unavoidably self-consistent since differential equations are derived (not assumed) from models of (Helmholtz free) energy and dissipation of the electrolyte. The origin of the Hofmeister series is (in my view) an inverse problem that becomes well posed when enough data from disjoint experimental traditions are interpreted with a self-consistent theory.Comment: As prepared for Faraday Discussion, Pavel Jungwirth Organizer, 3 - 5 September 2012, Queens College Oxford, UK on Ion Specific Hofmeister Effects. Version 2 has significant typo corrections in eq. 1 and eq. 4, and has been reformatted to be easier to rea

    The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies

    Get PDF
    Despite the clinical significance of balanced chromosomal abnormalities (BCAs), their characterization has largely been restricted to cytogenetic resolution. We explored the landscape of BCAs at nucleotide resolution in 273 subjects with a spectrum of congenital anomalies. Whole-genome sequencing revised 93% of karyotypes and demonstrated complexity that was cryptic to karyotyping in 21% of BCAs, highlighting the limitations of conventional cytogenetic approaches. At least 33.9% of BCAs resulted in gene disruption that likely contributed to the developmental phenotype, 5.2% were associated with pathogenic genomic imbalances, and 7.3% disrupted topologically associated domains (TADs) encompassing known syndromic loci. Remarkably, BCA breakpoints in eight subjects altered a single TAD encompassing MEF2C, a known driver of 5q14.3 microdeletion syndrome, resulting in decreased MEF2C expression. We propose that sequence-level resolution dramatically improves prediction of clinical outcomes for balanced rearrangements and provides insight into new pathogenic mechanisms, such as altered regulation due to changes in chromosome topology

    DMTs and Covid-19 severity in MS: a pooled analysis from Italy and France

    Get PDF
    We evaluated the effect of DMTs on Covid-19 severity in patients with MS, with a pooled-analysis of two large cohorts from Italy and France. The association of baseline characteristics and DMTs with Covid-19 severity was assessed by multivariate ordinal-logistic models and pooled by a fixed-effect meta-analysis. 1066 patients with MS from Italy and 721 from France were included. In the multivariate model, anti-CD20 therapies were significantly associated (OR = 2.05, 95%CI = 1.39–3.02, p < 0.001) with Covid-19 severity, whereas interferon indicated a decreased risk (OR = 0.42, 95%CI = 0.18–0.99, p = 0.047). This pooled-analysis confirms an increased risk of severe Covid-19 in patients on anti-CD20 therapies and supports the protective role of interferon

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore