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Abstract

Despite their clinical significance, characterization of balanced chromosomal abnormalities 

(BCAs) has largely been restricted to cytogenetic resolution. We explored the landscape of BCAs 

at nucleotide resolution in 273 subjects with a spectrum of congenital anomalies. Whole-genome 

sequencing revised 93% of karyotypes and revealed complexity that was cryptic to karyotyping in 

21% of BCAs, highlighting the limitations of conventional cytogenetic approaches. At least 33.9% 

of BCAs resulted in gene disruption that likely contributed to the developmental phenotype, 5.2% 

were associated with pathogenic genomic imbalances, and 7.3% disrupted topologically associated 

domains (TADs) encompassing known syndromic loci. Remarkably, BCA breakpoints in eight 

subjects altered a single TAD encompassing MEF2C, a known driver of 5q14.3 microdeletion 

syndrome, resulting in decreased MEF2C expression. This study proposes that sequence-level 

resolution dramatically improves prediction of clinical outcomes for balanced rearrangements, and 

provides insight into novel pathogenic mechanisms such as altered regulation due to changes in 

chromosome topology.
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Balanced chromosomal abnormalities (BCA) are a class of structural variation involving 

rearrangement of chromosome structure that alters the orientation or localization of a 

genomic segment without a concomitant large gain or loss of DNA. This class of variation 

includes inversions, translocations, excisions/insertions, and more complex rearrangements 

consisting of combinations of such events. Cytogenetic studies of unselected newborns and 

control adult males estimate a prevalence of 0.2–0.5% for BCAs in the general 

population1–3. By contrast, an approximate five-fold increase in the prevalence of BCAs 

detected by karyotyping has been reported among subjects with neurodevelopmental 

disorders, particularly intellectual disability (1.5%)4 and autism spectrum disorder (ASD; 

1.3%)5, suggesting that a meaningful fraction of BCAs may represent highly penetrant 

mutations in those subjects.

Delineating the breakpoints of BCAs, and the genomic regions that they disrupt, has long 

been a fertile area of novel gene discovery and has greatly contributed to the annotation of 

the morbid map of the human genome6–8. Despite their significance in human disease, the 

clinical detection of this unique class of rearrangements still relies upon conventional 

cytogenetic methods such as karyotyping that are limited to microscopic resolution (~3–10 

Mb)9. The absence of gross genomic imbalances renders BCAs invisible to higher resolution 

techniques that currently serve as first-tier diagnostic screens for many developmental 

anomalies of unknown etiology: chromosomal microarray (CMA), which can detect 

microscopic and sub-microscopic copy number variants (CNVs), or whole-exome 

sequencing (WES), which surveys single nucleotide variants within coding regions. We have 

recently shown that innovations in genomic technologies can efficiently reveal BCA 

breakpoints at nucleotide resolution with a cost and timeframe comparable to clinical CMA 

or karyotyping; however, only a limited number of BCAs have been evaluated to date7,10–15

In this study, we explored several fundamental but previously intractable questions regarding 

de novo BCAs associated with human developmental anomalies, such as the origins of their 

formation, the genomic properties of the sequences that they disrupt, and the mechanisms by 

which they can act as dominant pathogenic mutations. We evaluated 273 subjects 

ascertained based upon the presence of a BCA discovered by karyotyping in a proband that 

presented with a developmental anomaly. We mapped these BCA breakpoints at basepair 

resolution and created a framework to interpret their significance based on convergent 

genomic datasets, including CNV and WES data in tens of thousands of individuals. We also 

integrated data from high-resolution maps of chromosomal compartmentalization in the 

nucleus to predict long-range regulatory effects16,17, and confirm those predictions with 

functional validation. Our findings indicate that formation of BCAs involves a variety of 

mechanisms, that the end-result often reflects substantial complexity invisible to cytogenetic 

assessment, that BCAs directly disrupt genes likely to contribute to early developmental 

abnormalities in at least one-third of subjects, and that BCAs can cause long-range 

regulatory changes due to alterations to the chromosome structure.
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RESULTS

Sequencing BCAs reveals cryptic complexity

We sequenced DNA from 273 subjects originating from five primary referral sites that 

collectively engaged over 100 clinical investigators. Subjects harbored a BCA that was 

detected by karyotyping and presented with varied congenital and/or developmental 

anomalies. Most subjects were surveyed using large-insert whole-genome sequencing 

(liWGS or ‘jumping libraries’; 83%), with the remainder of subjects being analyzed by 

standard short-insert WGS or targeted breakpoint sequencing (see Online Methods; 

Supplementary Table 1). Subjects were preferentially selected with confirmed de novo 
BCAs based on cytogenetic studies or with rearrangements that segregated with a 

phenotypic anomaly within a family (72.5% of subjects); however, inheritance information 

was unavailable for one or both parents in the remaining 27.5% of subjects. Subjects 

harboring BCAs that were inherited from an unaffected parent were excluded from this 

study. Of interest, 62.6% of subjects received clinical CMA screening prior to enrollment to 

confirm the absence of a pathogenic CNV (Table 1). Subjects presented with a spectrum of 

clinical features: congenital anomalies ranged from organ-specific disorders to multisystem 

abnormalities, as well as neurodevelopmental conditions such as intellectual disability or 

ASD (Table 1). While no specific phenotypes were prioritized for inclusion (Supplementary 

Fig. 1), neurological defects were the most common feature in the cohort (80.2% of subjects 

when using digitalized phenotypes from Human Phenome Ontology [HPO]18; Table 1; 

Supplementary Table 2).

Breakpoints were identified in 248 of the 273 subjects (90.8%); all subsequent analyses were 

restricted to these 248 subjects. This success rate was consistent with expectations, as 

simulation of one million breakpoints in the genome suggested that 7.6% of breakpoints 

were localized within genomic segments that cannot be confidently mapped by short-read 

sequencing (Supplementary Fig. 2). Sequencing identified 876 breakpoints genome-wide 

(Fig. 1a) and revised the breakpoint localization by at least one sub-band in 93% of subjects 

when compared to the karyotype interpretation (breakpoint positions provided in 

Supplementary Table 3). Across all rearrangements, 26% (n=65) of BCAs were found to be 

complex (i.e., involved three or more breakpoints; Supplementary Fig. 3–65), including 5% 

(n=13) that were consistent with the phenomena of chromothripsis or chromoplexy 

(complex reorganization of the chromosomes involving extensive shattering and random 

ligation of fragments from one or more chromosomes)19–23. The most complex BCA 

involved 57 breakpoints (Supplementary Fig. 59). When analyses were restricted to the 230 

subjects for which the karyotype suggested a simple chromosomal exchange, 48 (21%) were 

determined to harbor complexity that was cryptic to the karyotype, emphasizing the insights 

that are gained from nucleotide resolution. Across all BCAs, 80.7% resolved to less than ten 

kilobases of total genomic imbalance, although several cases harbored large cryptic 

imbalances (mostly deletions) of varied impact (Fig. 1b; Supplementary Table 4). 

Importantly, only 12.2% had imbalances of >100 kb in this study (9.3% greater than 1 Mb), 

representing a significantly lower fraction than previous cytogenetic estimates24. Genomic 

imbalances associated with BCAs were larger on average among subjects without CMA pre-

screening, with 15.5% harboring imbalances >1 Mb versus 5.9% in subjects pre-screened by 
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CMA (Fig. 1b; Supplementary Table 4). The total genomic imbalance generally increased 

with the number of breakpoints, though there were chromothripsis and chromoplexy events 

that were essentially balanced (e.g., subject NIJ19 involved 13 junctions across five 

chromosomes that resolved to a final genomic imbalance of only 631 bases).

BCA formation is mediated by multiple molecular mechanisms

Extensive mechanistic studies have been performed on breakpoints of large CNV datasets; 

however, the limited scale and resolution of BCA studies have precluded similar analyses for 

balanced rearrangements. Using precise junction sequences from 662 breakpoints, we found 

that nearly half displayed signatures of blunt-end ligation (45%), presumably driven by non-

homologous end joining (NHEJ) (Fig. 1c). A substantial fraction (29%) involved 

microhomology of 2–15 bp at the breakpoint junction, indicating that template-switching 

coupled to DNA-replication mechanisms such as microhomology-mediated break-induced 

replication (MMBIR) contribute to a substantial fraction of BCAs25. A comparable fraction 

(25%) of junctions harbored micro-insertions of several basepairs, consistent with NHEJ or 

fork stalling and template switching (FoSTeS) mechanisms (Fig. 1c). Only nine junctions 

(1%) contained long stretches of homologous sequences (>100 bp) that would be consistent 

with homology-mediated repair. This is certainly an underestimate given the limitations of 

short-read sequencing to capture rearrangements localized within highly homologous 

sequences such as segmental duplications or microsatellites. BCA breakpoint signatures 

from this study were also compared to 8,943 deletion breakpoints identified in 1,092 

samples from the 1000 Genomes Project26, revealing that BCA breakpoints were enriched 

for blunt-end signatures while depleted for microhomology and large homology sequences 

compared to deletion breakpoints (Supplementary Fig. 66).

Comparison of the observed breakpoints to 100,000 sets of simulated breakpoints that 

retained the properties of the observed dataset (see Online Methods) established nominal 

enrichment for repeat elements (P=0.021) and fragile sites (P=0.043), while no significant 

enrichment for the other genomic features tested (Supplementary Fig. 67). Incorporating Hi-

C interaction data to explore the association between nuclear organization of the 

chromosomes and BCA formation revealed that pairs of loci comprising a BCA breakpoint 

did not stem from regions with significantly higher contact patterns in the nucleus17; 

however, these pairs displayed genome-wide interaction patterns that were more correlated 

than random pairings (P=0.046; Supplementary Note and Supplementary Fig. 68). These 

results suggest that DNA fragments involved in BCA formation are more likely to be co-

localized in the same or neighboring sub-compartments prior to chromosomal reassembly, 

though at the sample sizes available they did not necessarily harbor increased direct 

interactions.

BCA breakpoints associated with congenital anomalies are enriched for functionally 
relevant loci

While protein-coding sequences represent less than 2% of the human genome, the total 

genic space in which a structural variation can disrupt a transcript is considerable as the 

cumulative coverage of transcribed regions is over 60% from recent annotations27. 

Consistent with this expectation, 67% (589/876) of breakpoints in this study disrupted a 
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gene, and at least one gene was truncated in most BCAs (75%, 186/248), which did not 

deviate from random expectations (observed n=408 genes, expected n=392±20, P=0.220; 

Supplementary Fig. 69). The properties of the disrupted genes, however, deviated 

significantly from randomly breakpoints for several key features, suggesting that the 

pathogenic impact of BCAs in this cohort is not a consequence of their likelihood to disrupt 

genes but rather a reflection of the gene(s) that they alter (disrupted genes provided in 

Supplementary Table 5).

We observed significant enrichment for disruption of genes highly intolerant to truncating 

mutations, as defined by two independent groups (P=0.027 for Petrovski et al., P=0.0009 for 

Samocha et al.; Fig. 2a)28,29, embryonically expressed genes (P=0.001)30, and genes 

previously associated with autosomal dominant disorders (P=0.002)31, whereas no 

enrichment was observed for genes associated with autosomal recessive disorders (P=0.294; 

Fig. 2a)31. The strongest enrichment at breakpoints was detected for genes previously 

associated with developmental disorders (≥2 de novo LoF mutations [dnLoF]) as 

amalgamated from independent datasets (P=2×10−5; Supplementary Table 6). Significant 

enrichment was also observed at breakpoints for FMRP-target genes and chromatin 

remodeling genes32,33, consistent with the association of genes implicated in 

neurodevelopmental disorders (Fig. 2b)7,30,34–37, but not CHD8 target genes38,39. When 

further incorporating expression data of the developing brain from BrainSpan40, truncated 

genes showed higher expression patterns during early developmental stages than randomly 

simulated datasets (Supplementary Fig. 70). By contrast, there was no significant enrichment 

of genes associated with schizophrenia41,42, or gene-sets associated with complex disorders 

that were considered as negative controls such as type-II diabetes, cancer, or height. 

Subgroup analyses revealed that most enrichment signals were driven by the predominance 

of neurological abnormalities among the subjects (Supplementary Fig. 71).

BCAs predominantly contribute to developmental anomalies by direct gene truncation

We next asked the fundamental question: “How often does a BCA represent a likely 

pathogenic mutation that contributes to the subject’s abnormal developmental phenotype?” 

We built an interpretation framework using categories comparable to those established by 

ClinVar and the Deciphering Developmental Disorders consortium (DDD)43; however, we 

restricted interpretation of potential clinical relevance to Pathogenic or Likely Pathogenic, as 

detailed below and in Supplementary Table 7. All other variants were interpreted as Variant 
of Unknown Significance (VUS; the predicted impact for each BCA is provided in 

Supplementary Table 8).

Pathogenic—We compared loci disrupted by BCAs to genes that had been robustly 

associated with dominant developmental disorders (≥3 reported cases with dnLoF in OMIM, 

DDD, and amalgamated large-scale sequencing studies in neurodevelopmental disorders; see 

Supplementary Note and Supplementary Table 6). In total, 66 subjects (26.6%) harbored 

Pathogenic BCAs that disrupted these previously defined developmental loci either through 

direct gene disruption or genomic imbalance (Fig. 2c; Table 2; Supplementary Table 9). In 

the majority of these subjects (53/66), the rearrangement truncated a high confidence 

syndromic locus. These included known drivers of recurrent microdeletion syndromes (e.g., 
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SATB2, MBD5, EHMT1, NFIA, ZBTB20)44–48, loci associated with imprinting disorders 

(SNURF-SNRPN), and genes well-established as highly penetrant loci in developmental 

disorders (e.g., CHD7, CHD8, CDKL5, CUL3, DYRK1A, GRIN2B), as well as more 

recently implicated genes such as AHDC1, CTNND2 and WAC (Fig. 2c; Table 2; 

Supplementary Table 9)49–51. Several genes were disrupted in two or more subjects, further 

confirming their role in developmental anomalies (Table 2). Importantly, ten subjects 

harbored BCAs that disrupted genes associated with dominant disorders for which the 

expected phenotype was not reported in the proband (e.g. cardiovascular defects, childhood 

or late-onset hearing loss, neurodegenerative disorder; Supplementary Table 9). In these 

subjects, the rearrangements could represent pleiotropy (i.e. disruption of the same locus that 

can manifest in multiple distinct phenotypes) or incidental findings, and were thus 

interpreted as VUS. In the remaining 13 subjects with Pathogenic BCAs (13/66), genomic 

imbalances at the breakpoints either overlapped with known microdeletion/microduplication 

syndromes, or encompassed a gene associated with a dominant developmental disorder (e.g., 
12p12.1-p11.22 deletion encompassing SOX5; Table 2; Fig. 2c).

Likely Pathogenic—Each specific rearrangement effectively represents a private event, 

which is a major challenge for interpretation in genomic studies. To interpret variants as 

Likely Pathogenic, we relied on convergent genomic evidence from large-scale datasets, 

postulating that candidate genes associated with congenital anomalies or early 

developmental defects would show evidence of intolerance to haploinsufficiency. Thirty-one 

subjects harbored BCAs that were considered Likely Pathogenic (Table 2; Supplementary 

Tables 8, 10). In 25 subjects, the rearrangement directly disrupted a gene intolerant to 

dnLoF, and in which dnLoF mutations had been previously reported in isolated cases (1 or 2 

subjects, with an additional subject now represented by the BCA in our study; e.g. 

CACNA2D3, ROBO2, NFIB), some of which had strong biological support for involvement 

in developmental anomalies (EP400, STXBP5, NRXN3). There were also several genes 

disrupted in multiple subjects from the cohort (NPAS3, PTPRZ1, SYNCRIP; Table 2, 

Supplementary Tables 10–11). Two subjects had BCAs likely associated with genomic 

disorders: one involved a 2p21-p13.3 duplication encompassing NRXN1, and the other 

disrupted the imprinted 11p15 region associated with Silver-Russel syndrome 

(MIM#180860). In the remaining four subjects with Likely Pathogenic BCAs, the 

rearrangement truncated genes that were associated with developmental disorders, yet only 

activating or missense mutations had been previously reported (e.g., CACNA1C and 

GNB1)52,53, proposing a dosage sensitive model for these loci. Based on these results, we 

interpreted that 12.5% (31/248) of subjects harbored a BCA that likely contributed to the 

developmental phenotype by disrupting potentially novel candidate genes or disease 

mechanisms.

Collectively, these data suggest that 39.1% (97/248) of subjects have a phenotype that can be 

at least partially explained by haploinsufficiency or dosage alteration of an individual gene 

or locus (Fig. 2c; Supplementary Tables 8–10). Importantly, the overall diagnostic yield was 

significantly higher in subsets of the group, such as among those subjects who harbored de 
novo or co-segregating BCAs compared to subjects for whom inheritance was unknown 

(Fig. 2d), or among subjects who had not been screened clinically by CMA prior to 
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enrollment (Fig. 2e). Despite these substantial yields, the marked increase in the frequency 

of BCAs associated with birth defects compared to the general population still suggests that 

alternative mutational mechanisms, other than direct gene disruption, may account for the 

developmental defects in a fraction of subjects for which the BCAs were interpreted as 

VUS.

Positional effects via disruption of long-range regulatory interactions

Clusters of BCA breakpoints within intergenic regions may suggest disruption of strong 

regulatory elements that contribute to disease manifestation via positional effects. 

Alternatively, this could reflect recurrent rearrangements due to fragile sites and/or 

recombination hotspots. To isolate genomic regions in which an unusual number of BCA 

breakpoints were localized, we partitioned the genome into 1 Mb bins. Remarkably, one 

genomic segment, localized to 5q14.3, achieved genome-wide significance and harbored 

breakpoints from eight independent BCAs (P=8×10−9; Fig. 3a).

All BCA breakpoints from the 5q14.3 cluster mapped to a region overlapping with the 

previously described 5q14.3 microdeletion syndrome for which almost 100 subjects have 

been previously reported, with MEF2C as the proposed genetic driver (Fig. 3b)54–60. 

However, there are reported deletions that do not encompass MEF2C (Fig. 3b), and we now 

report seven BCAs distal to MEF2C in subjects with comparable phenotypes to those 

harboring direct disruption of MEF2C, challenging the hypothesis that direct disruption of 

MEF2C is a necessary cause of the syndrome. When combining data from the literature, a 

total of 11 subjects harbor balanced rearrangement breakpoints localized to the same 1 Mb 

region within 5q14.3 (Fig. 3b)14,54,59. One BCA directly disrupted MEF2C while the 

remaining 10 mapped to intergenic regions distal to MEF2C; none included a breakpoint 

disrupting a locus of known significance elsewhere in the genome, suggesting that an 

alternative mechanism to direct gene disruption was operating in the 5q14.3 region. All 10 

BCAs with intergenic breakpoints were predicted to disrupt a topologically associated 

domain (TAD) containing MEF2C (Fig. 3b). TADs are structured chromatin domains of 

increased interactions that typically define a local regulatory unit bridging regulatory 

elements together with their target genes61. Their disruption by genomic rearrangements can 

lead to impaired gene regulation and therefore disease pathogenesis62–64. Correspondingly, 

in four subjects that harbored BCA breakpoints up to 860 kb distal to MEF2C, and for which 

RNA from lymphoblastoid cell lines (LCLs) was available, MEF2C expression was 

significantly reduced compared to controls (Fig. 3d). These analyses indicate that alteration 

of the TAD architecture in this genomic disorder region can disrupt normal MEF2C 
expression. When integrated with existing data, the converging clinical features suggest that 

multiple distinct mutational mechanisms can result in presentation of 5q14.3 microdeletion 

syndrome: (1) direct disruption of MEF2C via dnLoF mutations, (2) deletions including 

MEF2C, and (3) long-range positional effects from deletions and BCAs that do not directly 

truncate MEF2C yet disrupt its normal function via alteration of the TAD structure (Fig. 3c).

Beyond 5q14.3, three other loci were suggestive of an accumulation of BCA breakpoints 

(2q33.1, 6q14.3 and 14q12, each containing BCA breakpoints from four independent 

subjects), although they did not reach genome-wide significance (P=1×10−4; Fig. 3a). At 
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2q33.1, one BCA disrupted SATB2, associated with Glass syndrome and recognized as the 

established driver of the 2q33.1 microdeletion syndrome7,46, while the remaining three 

rearrangements were predicted to impact long-range interactions between SATB2 and its 

regulatory elements (Supplementary Fig. 72). In the 14q12 cluster, all BCA breakpoints 

were distal to FOXG1, which has been reported in atypical Rett syndrome65–68. The 

phenotypes associated with all four of these subjects were highly correlated based upon 

analyses of HPO reported terms (HPO-sim P-value=0.006; see Methods and Supplementary 

Table 11)69,70, and were consistent with the multiple previous reports of subjects with 

dysregulation of FOXG1 (Supplementary Fig. 73)65–68,71. At 6q14.3, four BCAs were 

localized in proximity to SYNCRIP, a highly constrained gene in which dnLoF had been 

reported in two subjects with neurodevelopmental disorders72. In one subject the BCA 

directly disrupted SYNCRIP, another subject harbored a breakpoint distal to SYNCRIP that 

was part of a cryptic 6q14.3 deletion encompassing the full gene, though the impact of the 

other two BCAs was unclear due to their localization to an adjacent contact domain 

(Supplementary Fig. 74). Finally, a systematic screen identified four additional subjects in 

which a TAD disruption could represent a positional effect on known syndromic loci 

associated with a developmental disorder that closely matched the subject’s phenotype 

(PITX2, SLC2A1, SOX9, SRCAP; Supplementary Fig. 75–77). In two of these regions, 

LCLs were available from the corresponding subjects and expression of the proposed driver 

gene was significantly reduced when compared to controls (SLC2A1 and SRCAP, 

Supplementary Fig. 75 and 76).

Collectively, 7.3% of subjects harbored a BCA predicted to alter long-range regulatory 

interactions involving an established syndromic locus with comparable phenotype, 

recurrently involving MEF2C, SATB2, and FOXG1, while an additional four subjects 

harbored a BCA that may represent long-range positional effects (two confirmed by 

expression studies). These data suggest that alterations to TAD structures likely represent a 

significant component of the deleterious impact of genomic rearrangements.

DISCUSSION

This characterization of BCAs at nucleotide resolution offers new insights into their 

mechanisms of formation, the properties connected to their rearrangement in the nucleus, 

and a substantial yield of potentially novel genes associated with human development. These 

results also emphasize that neither the mere presence of a BCA in a subject with 

developmental anomalies nor the number of genes it disrupts (if any) provide sufficient 

prognostic power, but rather that the properties of the specific genes and regions that are 

altered are the most informative in predicting resultant phenotypes. These data build upon 

recent studies on genome topology and provide further evidence that alterations to 

chromosome structure can lead to alternative, yet potentially predictable, pathogenic 

mechanisms by changing the long-range regulatory architecture of physical interactions and 

chromatin looping in the nucleus62–64,69. The yield of clinically meaningful results in this 

study, which ranged from 26.6% to 46.4% of the subjects evaluated, was substantial. 

Nonetheless, the relative enrichment from cytogenetic studies of BCAs in subjects with 

developmental abnormalities compared to controls suggests that there are yet additional 
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alternative pathogenic mechanisms associated with de novo chromosomal rearrangements 

that remain to be discovered4,5.

These data provide an initial vantage of the potential utility of emerging datasets that 

characterize the nuclear organization of the chromosomes. They propose novel pathogenic 

mechanisms by which BCAs may operate, which appear to be a consequence of the 

disruption of long-range interactions between regulatory elements and their target 

gene62–64,69. Structural variants can indeed easily scramble DNA topology and contact 

domains with potentially dramatic regulatory consequences. TADs cover a substantial 

fraction of the genome; therefore, the vast majority of structural variation will perturb one of 

those domains and cannot constitute a predictive criterion for pathogenicity per se. However, 

these data propose that the recurrent disruption of a TAD encompassing a high confidence 

locus beyond what is expected by chance, concomitant with strong phenotypic overlap 

between the carrier of the variant and haploinsufficiency of the locus in independent subjects 

and demonstrated effect on gene expression, may represent a first step towards highlighting 

putative positional effects in the human genome. There is clearly a need for sensitive and 

specific tools to predict such positional effects caused by long-range regulatory 

perturbations, and to annotate further the morbid genome with more expansive knowledge of 

these functional interactions. The fraction of BCAs in this study that may be associated with 

this pathogenic mechanism is therefore just an entrée into their likely significance as a 

component of the unexplained genetic contribution to human birth defects.

In terms of evaluating diagnostic strategies, this study further highlights limitations of 

current diagnostic tools such as karyotyping or CMA in interpreting and detecting 

BCAs10,12–15. While the capability to visualize the chromosomes and detect de novo BCAs 

by traditional karyotyping represented a critical leap in genetic diagnostics, as exemplified 

by the seminal population cytogenetic studies performed by our late co-author, Dorothy 

Warburton73, the detection of gross chromosomal abnormalities provides limited prognostic 

capability. Our data demonstrate that karyotyping significantly underestimates complex 

rearrangements and is almost always revised by at least a sub-band. Karyotyping is also 

insensitive to genomic imbalances that cannot be directly visualized (~5–10 Mb). By 

comparison, CMA is generally recommended as a first-tier diagnostic screen given its 

sensitivity to detect submicroscopic CNVs, yet it is blind to copy-neutral events such as 

those described herein. This study provides critical new insights into the fraction of BCAs 

that can be ascertained by CMA analyses. Compared to cytogenetic estimates suggesting 

that up to 40% of BCAs resolved as unbalanced rearrangements and could therefore be 

ascertained using CMA24, whole-genome sequencing in this cohort suggests that, even at the 

resolution of 100 kb, only about 12% of BCAs involved a genomic imbalance. If we 

consider only the 102 subjects for whom no CMA was previously performed, this proportion 

increases to 18.8% at 100 kb resolution and 17.6% at 500 kb resolution, suggesting that 

81.2–82.4% of BCAs in this study would be inaccessible to most CMA platforms routinely 

used in clinical diagnostics. Notably, there is still benefit to an initial CMA screen, as is 

illustrated by the significantly lower yield of pathogenic BCAs among subjects who had 

been pre-screened by CMA (19–37%) compared to those who had not (41–64%; Fig. 2e), 

indicating that a fraction of pathogenic variation in these genomes was captured by the CMA 

prescreen either in relation to or independent of the BCA.
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These data strongly argue for the implementation of technologies capable of detecting both 

balanced and unbalanced genomic rearrangements. This could be achieved by using a 

conventional cytogenetic test followed by a reflex WGS analysis when an abnormality is 

detected, which we have previously demonstrated can provide access to all classes of 

structural variation in the human genome in a relatively rapid timeframe11,74. Despite its 

great promise, it is important to recognize the limitations of massively parallel sequencing in 

routine cytogenetic practice. This study used large-insert jumping libraries to maximize 

physical coverage and minimize cost per base of genome covered. Yet these analyses failed 

to reveal breakpoints in 9% of BCAs tested, and our simulations indicate that at large sample 

sizes, we would anticipate ~7–8% of breakpoints to be undetectable by short-read 

sequencing. As sequencing technologies and analytical capabilities improve, this component 

of the variant spectrum that are recalcitrant to short-read sequencing will become more 

tractable to genomic approaches, and the future implementation of long-read sequencing 

may revolutionize the capacity to survey currently inaccessible segments of the human 

genome75,76.

In conclusion, these data indicate that de novo BCAs represent a highly penetrant mutational 

class in human disease, and that their delineation can provide prognostic insights not 

available at current cytogenetic resolution. Although encouraging, this yield does not explain 

all of the developmental anomalies in this cohort and suggests that additional pathogenic 

mechanisms await discovery. A meaningful fraction may be attributable to novel genes or 

regulatory alterations, but additional pathogenic mechanisms remain to be explored such as 

recessive modes of inheritance, gene fusions, disruption of imprinted regions, enhancer 

adoption69,77, and more complex oligogenic models. Evaluation of extremely large cohorts 

will be required to resolve further such mechanisms, and characterization of BCAs in control 

populations would benefit annotation of the morbid human genome and interpretation of the 

biological and clinical consequences of its structural rearrangement.

ONLINE METHODS

Subject Ascertainment

Subjects were enrolled through cytogenetic reference centers including DGAP (the 

Developmental Genome Anatomy Project) of Brigham and Women’s Hospital and 

Massachusetts General Hospital, Boston, MA; Mayo Clinic, Rochester, MN; University 

Medical Center, Utrecht, NL; Radboud University Medical Center, Nijmegen, NL. 

Enrollment was based on the presence of a developmental anomaly and concomitant BCA 

(de novo or that segregated with the abnormal phenotype) detected by karyotyping, and 

exclusion of clinically significant genomic copy number imbalances using chromosomal 

microarray analyses (SNP array or array-CGH) when possible (171/273 tested subjects; 

Supplementary Fig. 1). In the majority of cases the BCA was confirmed to have arisen de 
novo by karyotyping (184/273) or segregated with a developmental phenotype in the family 

(14/273). In a subset of subjects: (1) the BCA was inherited but the phenotype of the 

transmitting parent was not available (3/273); (2) one parent was available and did not 

harbor the BCA (4/273); or (3) neither parents were available for testing (68/273). An 

informed consent was obtained from all subjects or their legal representative for 
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participation in the study. All studies were approved by respective Institutional Review 

Boards.

Whole-genome sequencing using large-insert jumping libraries

Blood samples were collected from all subjects and their parents when available. DNA was 

extracted from blood or from freshly derived LCLs. Samples were prepared using multiple 

sequencing methods over several years (Supplementary Table 1). Most samples were 

sequenced using whole-genome large-insert jumping library preparation protocols for 

subsequent Illumina sequencing: 149 using our 2×25-bp EcoP15l protocol11,80, 59 using a 

variant of our jumping library protocol in which we randomly shear circularized DNA, 

which enables longer reads (paired-end 50 bp, see Supplementary Note) and 19 using 

standard Illumina mate-pair protocols. All large-insert sequencing methods allowed 

generation of paired-end reads with median insert size of 2.5–3.5 kb as opposed to 300 bp 

using conventional methods. A subset of samples were prepared with standard short-insert 

paired-end protocols (n=12) or targeted sequencing of the breakpoints based on previous 

positional cloning to narrow the breakpoint regions (n=34), as previously described7,11,81. 

Of note, 87 BCAs had been initially reported in the literature, though many had not been 

mapped to sequence resolution (Supplementary Table 1).

Digitalization and homogenization of reported phenotypes

Clinical description was converted for all 273 subjects into standardized terms using Human 

Phenotype Ontology (HPO; Supplementary Table 2)18. Such digitalization allowed 

systematic comparison of phenotypes between subjects carrying BCAs that disrupted the 

same gene, as well as between subjects with a disrupted gene to previously described 

subjects using Phenomizer82. HPO-sim was used to compute phenotypic similarity scores 

between subjects sharing the disruption of the same gene or locus compared to random 

expectations (Supplementary Table 11). P-values were generated as the proportion of 

simulated scores greater than the observed probands’ score, alike described by the authors70. 

HPO-digitalization also allowed the generation of heatmaps summarizing the correlation 

between disrupted genes and phenotypes reported in subjects. For each gene, the number of 

HPO terms belonging each broad HPO categories was computed18. The matrix was then z-

score transformed by gene, and clustering was performed using a distance matrix of 

correlation coefficients and average agglomeration (Figure 4).

BCA discovery pipeline and breakpoint inference

All computational analyses have been previously described74,83. In brief, reads were reverse-

complemented and aligned using BWA84. Anomalous read-pairs in terms of insert size, mate 

mapping, or mate orientation were extracted using Sambamba and clustered using 

ReadPairCluster, our single-linkage clustering algorithm11,85. Anomalous read-pair clusters 

meeting our established thresholds of structural variation were subsequently classified based 

on their read-pair orientation signature into the following categories: deletions, insertions, 

inversions, and translocations83. When no clusters were found that matched the proposed 

karyotype, BAM files were agnostically analyzed and manually inspected for anomalous 

pairs or split reads. Breakpoints were successfully identified in 248 of 273 cases, leading to 

an overall breakpoint fine-mapping yield of 91%. All subsequent counts and yields were 
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computed relative to mapped cases (n=248). For the remaining 25 unmapped cases, no 

breakpoints were identified in proximity to the karyotype interpretation following extensive 

analyses and visual inspection. For the majority of these latter unresolved cases, one or more 

breakpoints were interpreted by the karyotype to localize near centromeres heterochromatic 

regions, or within segmental duplications, which are recognized to be blind spots for short-

read alignments. All large genomic imbalances predicted to be connected to BCA 

breakpoints following rearrangement reconstruction were confirmed to have aberrant depth 

of coverage using a custom R-script (CNView: https://github.com/RCollins13/CNView).

When additional DNA was available, precise breakpoint junctions were delineated at base-

pair resolution by Sanger sequencing and final breakpoints coordinates were reported; else 

the reported coordinates reflect the closest breakpoint estimates based on the resolution of 

the jumping libraries (Supplementary Table 3). A total of 82.7% (725/876) of the reported 

breakpoints could be tested by Sanger sequencing given DNA availability, among which 662 

were confirmed yielding a minimum estimate of 91.3% (662/725) sensitivity for our 

mapping method.

Molecular signature of BCA breakpoints

As previously described22, we processed all Sanger sequences from validated breakpoints 

with the BWA Smith-Waterman algorithm (modified parameters z 100 -t 3 -H -T 1) to 

retrieve precise breakpoint coordinates as well as infer the associated microhomology, 

micro-insertions or blunt end signature. This approach was sufficiently high-throughput to 

enable the direct comparison of BCA breakpoints with a large set of deletion breakpoints 

published by Abyzov et al.26, at the cost of not allowing concomitant microhomology and 

base insertions at breakpoints.

Monte-Carlo randomization tests and associated statistics

A Browser Extensible Data (BED) file containing GRCh37/hg19 genomic coordinates of all 

876 breakpoints detected by WGS was used as the input. One simulation consisted of 

generating random coordinates based on each pair of input coordinates, conserving the size 

of the feature as well as the intra-chromosomal distance when several breakpoints were 

localized to the same chromosome in a single individual. N-masked regions were excluded 

from simulations for consistency as they were excluded from the initial alignment mapping. 

Simulations were repeated 100,000 times. The number of unique intersections between the 

shuffled file and a BED-file containing features of interest (gene-sets, regulatory elements, 

etc.) was retrieved for each simulation, and the final sets of simulations delineated the 

expected distribution on intersections under the null hypothesis. The observed value of 

intersected features in this study was compared to this expected distribution. Empirical 

Monte-Carlo P-values were indicated, and were calculated as follows: P-value = (r + 1)/(n 
+ 1), where r is the number of observations within the set of simulations that are at least as 

extreme as the one observed, and n is the total number of simulations86. References for all 

functional element datasets and genesets that were used to test for enrichment at breakpoints 

in the cohort are detailed in Supplementary Table 12.
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To isolate genomic regions in which an unusual number of BCA breakpoints were localized, 

we partitioned the genome into 1 Mb bins using a sliding window of 100 kb, and counted the 

number of BCA breakpoints coming from independent subjects. The same approach was 

performed for 100,000 sets of simulated breakpoints generated as detailed previously. P-

values were computed by comparing observed to expected cluster sizes after 100,000 Monte 

Carlo randomizations, and corrected for the total number of windows interrogated. Genome-

wide significance was achieved for clusters with P-values below 1.6×10−6.

BCA outcome interpretation

To build reference lists of genes associated with dominant developmental disorders we 

amalgamated data from multiple large-scale exome sequencing, genome sequencing, or 

CNV studies investigating developmental (e.g. DDD consortium) and neurodevelopmental 

disorders (mostly intellectual disability, autism, and epilepsy cohorts; see Supplementary 

Note and Supplementary Table 6 for detailed references). We then built our interpretation 

using standard categories comparable to those established by ClinVar and the Deciphering 

Developmental Disorders consortium (DDD)43, as detailed below and in Supplementary 

Table 7.

Pathogenic: Confirmed Loci associated with developmental disorders—Any 

gene with three or more de novo LoF mutations (frameshift, nonsense or splice mutation, 

CNV, or BCA) reported from independent cases in those amalgamated studies or in OMIM 

was considered as high confidence for a particular phenotype, and any BCA impacting one 

of those loci was therefore considered to be Pathogenic (Supplementary Table 9).

Likely Pathogenic: Novel candidate genes or mechanisms—To evaluate the 

impact of the remaining BCAs and the genes they likely impacted, we relied on convergent 

genomic evidence from other large-scale datasets to prioritize which gene would most likely 

contribute to the subject’s phenotype. Multiple BCAs were considered to be Likely 
Pathogenic, based on various evidences (Supplementary Table 10):

1. Disruption of a likely risk factor: Disruption of one copy of a gene in which one 

or two dnLoF mutations had been previously reported and which demonstrated 

significant constraint (top 10% of constrained genes)28,29

2. Novel mechanisms: Disruption of a gene established as associated with dominant 

developmental disorders yet with a distinct mutation type (e.g. activating or 

missense mutations while we reported LoF)

3. Disruption of long-range interactions: BCA breakpoints located in the vicinity of 

a gene associated with dominant developmental disorders in a subject with a 

consistent phenotype, and predicted to impact long-range regulatory interactions.

VUS—All BCAs impacting genes not fitting in any of the above-mentioned categories were 

considered as VUS.
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Predicted disruption of contact domains by BCAs

Topological associated domains (TADs) and predicted loops for lymphoblastoid cells were 

retrieved from Dixon et al. and Rao et al.17,61, and genes contained within a domain for 

which at least one of its insulating boundaries was disrupted by a BCA were assessed. Only 

genes that had been previously robustly associated with dominant developmental disorders 

(i.e., with dnLoF reported in three or more subjects) were considered for potential positional 

effects. A detailed comparison of the reported phenotypes in the corresponding subjects to 

phenotypes associated with disrupted genes in the literature was performed. For subjects 

identified with a BCA of plausible positional effect, the region was visualized using 

Juicebox87 (Supplementary Fig. 72–77). Heatmaps represent observed intrachromosomal 

interactions in GM12878 lymphoblastoid cells in a specific window; previously reported 

contact domains (regions of increased contact, not necessarily materializing as loops) and 

loops (sites of increased focal contacts indicating the presence of a loop) were indicated17,61, 

as well as the RefSeq genes located in the region.

Measuring gene expression from lymphoblasts

In subjects for whom the BCA was suspected to result in positional effects and for whom 

LCLs derived from blood were available, gene expression was investigated by quantitative 

RT-PCR. LCLs were not tested for mycoplasma contamination. Total RNA was extracted 

from LCLs using TRIzol® (Invitrogen) followed by RNeasy Mini Kit (Qiagen) column 

purification. cDNA was synthetized from 750 ng of extracted RNA using SuperScript® II 

Reverse Transcriptase (ThermoFisher Scientific with oligo(dT), random hexamers, and 

RNase inhibitor. Quantitative RT-PCR was performed for mRNA expression of genes of 

interest in the following subjects (MEF2C: DGAP131, DGAP191, DGAP218, DGAP222; 

SATB2: DGAP237; SLC2A1: DGAP170; SRCAP: DGAP134) using custom designed 

primers (see Supplementary Note). ACTB, GAPDH and POLR2A were each used as 

independent endogenous controls. Custom designed primers (0.75 μM final), cDNA (1:100 

final) and nuclease-free water were added to the LightCycler® 480 SYBR Green I Master 

Mix (Roche) for a final 10 μL reaction volume. A LightCycler® 480 (Roche) was used for 

data acquisition. Values of each individual (subject or control) were obtained in triplicates of 

similar variance. Results of triplicates for each gene of interest were normalized against the 

average of the three endogenous controls (ACTB, GAPDH and POLR2A). Normalized 

expression levels were set in relation to eight age and sex-matched controls for the genes of 

interest SATB2, SLC2A1 and SRCAP, or 16 (eight males, eight females) age-matched 

controls for the gene of interest MEF2C, using the ΔΔCt method. Results are expressed as 

fold-change relative to the averaged control individuals. The significance of differential gene 

expression from a subject in comparison to controls was tested using a two-sided Wilcoxon 

Mann-Whitney test. All qRT-PCR results were independently replicated twice in the 

laboratory.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Characterization of BCAs detected by karyotyping at nucleotide resolution

a. Genome-wide map of all BCA breakpoints identified in the cohort by whole-genome 

sequencing78. One color is used per BCA to represent all rearrangement breakpoints in each 

subject. The scatter plot on the outside ring denotes breakpoint density per 1-Mb bin across 

the genome, with a blue arrow displaying the largest clustering of breakpoints at 5q14.3; b. 

Scatter plot summarizing the overall genomic imbalance associated with fully reconstructed 

BCAs at varying size thresholds. Curves represent the fraction of cases with final genomic 

imbalances greater than the corresponding size provided. Solid lines denote the final 
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genomic imbalances for all BCAs, and are further delineated by deletions (red) or 

duplications (blue). The final genomic imbalances among fully mapped BCAs is also split 

between cases that have been pre-screened by CMA (dashed line) versus cases without 

CMA data (dotted line); c. Sequence signatures of BCA breakpoints. Histogram representing 

nucleotide signatures at the junction of 662 Sanger-validated breakpoints: inserted 

nucleotides, blunt ends, microhomology, or longer stretches of homology.
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Figure 2. 
De novo BCAs associated with congenital anomalies disrupt functionally relevant loci.

a. Boxplots illustrate specific gene-set enrichments at BCA breakpoints in subjects with 

congenital anomalies. Each boxplot represents the expected distribution (median, first and 

third quartiles) based on total intersections between 100,000 sets of simulated breakpoints 

and a particular gene-set. Red diamonds indicate the observed intersection values. Empirical 

Monte-Carlo P-values are indicated; b. Venn diagram showing the detailed overlap of 

disrupted genes previously associated with three neurodevelopmental phenotypes in 

amalgamated exome and CNV studies. In black: high-confidence genes (3 or more de novo 
LoF mutations reported), in grey: low-confidence genes (two de novo LoF mutations). c–e) 

Diagnostic yields associated with the overall cohort and multiple subgroups of BCAs. c. 

Diagnostic yield associated with all 248 mapped BCAs from subjects with congenital or 

developmental anomalies; d. Diagnostic yields partitioned by inheritance status; e. 
Diagnostic yields associated with BCAs depleted for large pathogenic CNVs thanks to CMA 

pre-screen compared to BCAs that had not been pre-screened by CMA.
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Figure 3. 
Recurrent disruption of long-range regulatory interactions at the 5q14.3 locus.

a. Genome-wide distribution of BCA breakpoints in the cohort across each 1-Mb bin. P-

values correspond to observed vs. expected cluster sizes after 100,000 Monte Carlo 

randomizations. Corrected P-values are reported. One cluster, localized to 5q14.3, achieved 

genome-wide significance (threshold demarcated by red line); b. Hi-C profile and contact 

domains at the 5q14.3 locus derived from human LCLs. Overlapping Hi-C data suggests that 

the topology of the MEF2C-contact domain is altered in subjects carrying BCAs17. Brain-

expressed enhancers located in the region79, loops involving MEF2C (yellow circles)17 and 

CTCF binding sites (green: forward, red: reverse) are indicated. Multiple pathogenic 

mechanisms converge on a similar syndrome: multi-genic deletions that encompass MEF2C 
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along with one or both TAD boundaries (n=68), MEF2C-intragenic deletions (n=12) or LoF 

mutations, deletions that do not encompass MEF2C but overlap one TAD boundary (n=13), 

and BCA breakpoints distal to MEF2C (breakpoints from seven subjects reported in this 

study and three previously reported subjects)14,54,59.; c. Proposed model of the chromatin 

folding in the region defining a regulatory unit for MEF2C; d. Significantly decreased 

expression of MEF2C was observed in subjects harboring BCAs distal to MEF2C compared 

to controls. MEF2C-expression was measured by qRT-PCR, normalized against three 

endogenous genes and compared to the average MEF2C-expression from 16 age-matched 

controls (two-sided Wilcoxon rank-sum test: DGAP131, DGAP191, DGAP222: P=0.0085, 

DGAP218: P=0.0160). Individual expression values, median, first and third quartiles are 

indicated.
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Figure 4. 
Correlations between phenotypes and genes disrupted in subjects harboring pathogenic 

BCAs.

For each gene, the phenotypes reported in the corresponding subject were digitalized using 

HPO18. One tile represents the normalized count of HPO terms belonging to each organ 

category reported in the subject(s). Genes clustered together when sharing similarly affected 

organs, from which five groups can be delineated: 1- genes associated with multiple nervous 

system and craniofacial abnormalities (dark blue); 2- genes connected to multiple 

neurological phenotypes (pink); 3- genes associated with craniofacial abnormalities and a 

few neurological symptoms (black); 4- genes associated with skeletal and limb 

abnormalities, and with limited neurological involvement (green); 5- genes without 

neurological involvement (light blue).
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Table 1

Overview of clinical phenotypes for all 273 subjects

Affected subjects Frequency in cohort

Gender

 Male 159 58.2%

 Female 114 41.8%

Co-Segregation

 De novo 184 67.4%

 Unknown 75 27.5%

 Inherited, segregating 14 5.1%

array-CGH analyses

 Normal 139 50.9%

 VUS 32 11.7%

 Not Performed 102 37.4%

Abdomen defects 54 19.8%

Cardiovascular defects 41 15.0%

Eye defects 54 19.8%

Hearing defects 52 19.0%

Genitourinary defects 50 18.3%

Growth defects 64 23.4%

Head/Neck/Craniofacial defects 140 51.3%

Integument defects 50 18.3%

Limb defects 57 20.9%

Musculature defects 71 26.0%

Neurological defects 219 80.2%

 Behavior disorders 51 18.7%

 Developmental delay 159 58.2%

 Epilepsy 51 18.7%

 Hypotonia 41 15.0%

 ASD/autistic features 31 11.4%

 High functioning ASD 4 1.5%

Respiratory defects 30 11.0%

Skeletal defects 116 42.4%

Clinical description was converted for all 273 subjects into standardized terms using Human Phenotype Ontology (HPO)18, which allowed 
systematic association with broad phenotypic categories for each enrolled subject.
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