1,110 research outputs found
Symptomatic snapping knee from biceps femoris tendon subluxation: an unusual case of lateral pain in a marathon runner
Snapping biceps femoris syndrome is an uncommon cause of lateral knee pain and may be difficult to diagnose, resulting in unsuccessful surgical intervention. In this report, we present an unusual case of a 37-year-old male marathon runner with unilateral snapping knee secondary to dislocation of the long head of the biceps femoris over the fibular head during knee flexion. The pain was great enough to interfere with his ability to practice sport. Possible causes of symptomatic snapping knee include multiple intra-articular or extra-articular pathology. Biceps femoris snapping over the fibular head is a rare condition. Reported causes include an anomalous insertion of the tendon into the tibia, trauma, and fibular-head abnormality. However, none of those conditions accounted for his symptoms. Failing conservative treatment, the patient underwent surgery for partial resection of the fibular head, with subsequent sudden resolution of symptoms and return to sport. Accurate knowledge and management of this rare condition is mandatory to avoid inappropriate therapy and unnecessary surgical procedures
Stable Photosymbiotic Relationship under CO2-Induced Acidification in the Acoel Worm Symsagittifera Roscoffensis
As a consequence of anthropogenic CO2 emissions, oceans are becoming more acidic, a phenomenon known as ocean acidification. Many marine species predicted to be sensitive to this stressor are photosymbiotic, including corals and foraminifera. However, the direct impact of ocean acidification on the relationship between the photosynthetic and nonphotosynthetic organism remains unclear and is complicated by other physiological processes known to be sensitive to ocean acidification (e.g. calcification and feeding). We have studied the impact of extreme pH decrease/pCO2 increase on the complete life cycle of the photosymbiotic, non-calcifying and pure autotrophic acoel worm, Symsagittifera roscoffensis. Our results show that this species is resistant to high pCO2 with no negative or even positive effects on fitness (survival, growth, fertility) and/or photosymbiotic relationship till pCO2 up to 54 K µatm. Some sub-lethal bleaching is only observed at pCO2 up to 270 K µatm when seawater is saturated by CO2. This indicates that photosymbiosis can be resistant to high pCO2. If such a finding would be confirmed in other photosymbiotic species, we could then hypothesize that negative impact of high pCO2 observed on other photosymbiotic species such as corals and foraminifera could occur through indirect impacts at other levels (calcification, feeding)
Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis
Anthropogenic CO2 emissions are acidifying the world’s oceans. A growing body of evidence demonstrates that ocean acidification can impact survival, growth, development and physiology of marine invertebrates. Here, we tested the impact of long-term (up to 16 months) and trans-life-cycle (adult, embryo/larvae and juvenile) exposure to elevated pCO2 (1,200 μatm, compared to control 400 μatm) on the green sea urchin Strongylocentrotus droebachiensis. Female fecundity was decreased 4.5-fold when acclimated to elevated pCO2 for 4 months during reproductive conditioning, while no difference was observed in females acclimated for 16 months. Moreover, adult pre-exposure for 4 months to elevated pCO2 had a direct negative impact on subsequent larval settlement success. Five to nine times fewer offspring reached the juvenile stage in cultures using gametes collected from adults previously acclimated to high pCO2 for 4 months. However, no difference in larval survival was observed when adults were pre-exposed for 16 months to elevated pCO2. pCO2 had no direct negative impact on juvenile survival except when both larvae and juveniles were raised in elevated pCO2. These negative effects on settlement success and juvenile survival can be attributed to carry-over effects from adults to larvae and from larvae to juveniles. Our results support the contention that adult sea urchins can acclimate to moderately elevated pCO2 in a matter of a few months and that carry-over effects can exacerbate the negative impact of ocean acidification on larvae and juveniles
Recovery index, attentiveness and state of memory after xenon or isoflurane anaesthesia: a randomized controlled trial
<p>Abstract</p> <p>Background</p> <p>Performance of patients immediately after anaesthesia is an area of special interest and so a clinical trial was conducted to compare Xenon with Isoflurane anaesthesia. In order to assess the early cognitive recovery the syndrome short test (SST) according to Erzigkeit (Geromed GmbH) was applied.</p> <p>Methods</p> <p>ASA I and II patients undergoing long and short surgical interventions were randomised to receive either general anaesthesia with Xenon or Isoflurane. The primary endpoint was the validated SST which covering memory disturbances and attentiveness. The test was used on the day prior to intervention, one and three hours post extubation. The secondary endpoint was the recovery index (RI) measured after the end of the inhalation of Xenon or Isoflurane. In addition the Aldrete score was evaluated up to 180 min. On the first post-operative day the patients rated the quality of the anaesthetic using a scoring system from 1-6.</p> <p>Results</p> <p>The demographics of the groups were similar. The sum score of the SST delivered a clear trend one hour post extubation and a statistically significant superiority for Xenon three hours post extubation (p < 0.01). The RI likewise revealed a statistically significant superiority of Xenon 5 minutes post extubation (p < 0.01). The Aldrete score was significantly higher for 45 min. The scoring system results were also better after Xenon anaesthesia (p < 0.001).</p> <p>Conclusions</p> <p>The results show that recovery from anaesthesia and the early return of post-operative cognitive functions are significantly better after Xenon anaesthesia compared to Isoflurane. The results of the RI for Xenon are similar with the previously published results.</p> <p>Trial Registration</p> <p>The trial was registered with the number ISRCTN01110844 <url>http://www.controlled-trials.com/isrctn/pf/01110844</url>.</p
Investigating the robustness of the classical enzyme kinetic equations in small intracellular compartments
<p>Abstract</p> <p>Background</p> <p>Classical descriptions of enzyme kinetics ignore the physical nature of the intracellular environment. Main implicit assumptions behind such approaches are that reactions occur in compartment volumes which are large enough so that molecular discreteness can be ignored and that molecular transport occurs via diffusion. Though these conditions are frequently met in laboratory conditions, they are not characteristic of the intracellular environment, which is compartmentalized at the micron and submicron scales and in which active means of transport play a significant role.</p> <p>Results</p> <p>Starting from a master equation description of enzyme reaction kinetics and assuming metabolic steady-state conditions, we derive novel mesoscopic rate equations which take into account (i) the intrinsic molecular noise due to the low copy number of molecules in intracellular compartments (ii) the physical nature of the substrate transport process, i.e. diffusion or vesicle-mediated transport. These equations replace the conventional macroscopic and deterministic equations in the context of intracellular kinetics. The latter are recovered in the limit of infinite compartment volumes. We find that deviations from the predictions of classical kinetics are pronounced (hundreds of percent in the estimate for the reaction velocity) for enzyme reactions occurring in compartments which are smaller than approximately 200 nm, for the case of substrate transport to the compartment being mediated principally by vesicle or granule transport and in the presence of competitive enzyme inhibitors.</p> <p>Conclusion</p> <p>The derived mesoscopic rate equations describe subcellular enzyme reaction kinetics, taking into account, for the first time, the simultaneous influence of both intrinsic noise and the mode of transport. They clearly show the range of applicability of the conventional deterministic equation models, namely intracellular conditions compatible with diffusive transport and simple enzyme mechanisms in several hundred nanometre-sized compartments. An active transport mechanism coupled with large intrinsic noise in enzyme concentrations is shown to lead to huge deviations from the predictions of deterministic models. This has implications for the common approach of modeling large intracellular reaction networks using ordinary differential equations and also for the calculation of the effective dosage of competitive inhibitor drugs.</p
Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
Biochemical mutagens affect the preservation of fungi and biodiversity estimations
Many fungi have significant industrial applications
or biosafety concerns and maintaining the original
characteristics is essential. The preserved fungi have to
represent the situation in nature for posterity, biodiversity
estimations, and taxonomic research. However, spontaneous
fungal mutations and secondary metabolites affecting
producing fungi are well known. There is increasing
interest in the preservation of microbes in Biological
Resource Centers (BRC) to ensure that the organisms
remain viable and stable genetically. It would be anathema
if they contacted mutagens routinely. However, for
the purpose of this discussion, there are three potential
sources of biochemical mutagens when obtaining individual
fungi from the environment: (a) mixtures of microorganisms
are plated routinely onto growth media
containing mutagenic antibiotics to control overgrowth
by contaminants, (b) the microbial mixtures may contain
microorganisms capable of producing mutagenic secondary
metabolites, and (c) target fungi for isolation may
produce “self” mutagens in pure culture. The probability
that these compounds could interact with fungi undermines
confidence in the preservation process and the
potential effects of these biochemical mutagens are considered
for the first time on strains held in BRC in this
review
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Compressed representation of a partially defined integer function over multiple arguments
In OLAP (OnLine Analitical Processing) data are analysed in an n-dimensional cube. The cube may be represented as a partially defined function over n arguments. Considering that often the function is not defined everywhere, we ask: is there a known way of representing the function or the points in which it is defined, in a more compact manner than the trivial one
- …