232 research outputs found

    An action of the Polishchuk differential operator via punctured surfaces

    Get PDF
    For a family of Jacobians of smooth pointed curves there is a notion of tautological algebra. There is an action of sl2\mathfrak{sl}_2 on this algebra. We define and study a lifting of the Polishchuk operator, corresponding to fsl2f\in \mathfrak{sl}_2, on an algebra consisting of punctured Riemann surfaces. As an application we prove that a collection of tautological relations on moduli of curves, discovered by Faber and Zagier, come from a class of relations on the universal Jacobian

    Bis{μ-2-[(pyridin-2-yl)imino­meth­yl]phenolato}bis­[(2-formyl­phenolato)copper(II)]

    Get PDF
    The asymmetric unit of the title compound, [Cu2(C12H9N2O)2(C7H5O2)2], contains two independent (2-formyl­phen­olato){2-[(pyridin-2-yl)imino­meth­yl]phenolato}copper(II) mol­ecules that form pseudocentrosymmetric dimers via inter­actions between the Cu and pyridyl N atoms of independent monomers. The square-planar geometry of the Cu atoms in the monomer thus becomes square-based pyramidal in the dimer. The crystal studied was an inversion twin, with unequal populations of 0.353 (17) and 0.647 (17)

    Microbial ligand costimulation drives neutrophilic steroid-refractory asthma

    Get PDF
    Funding: The authors thank the Wellcome Trust (102705) and the Universities of Aberdeen and Cape Town for funding. This research was also supported, in part, by National Institutes of Health GM53522 and GM083016 to DLW. KF and BNL are funded by the Fonds Wetenschappelijk Onderzoek, BNL is the recipient of an European Research Commission consolidator grant and participates in the European Union FP7 programs EUBIOPRED and MedALL. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Binary microlensing event OGLE-2009-BLG-020 gives a verifiable mass, distance and orbit predictions

    Get PDF
    We present the first example of binary microlensing for which the parameter measurements can be verified (or contradicted) by future Doppler observations. This test is made possible by a confluence of two relatively unusual circumstances. First, the binary lens is bright enough (I=15.6) to permit Doppler measurements. Second, we measure not only the usual 7 binary-lens parameters, but also the 'microlens parallax' (which yields the binary mass) and two components of the instantaneous orbital velocity. Thus we measure, effectively, 6 'Kepler+1' parameters (two instantaneous positions, two instantaneous velocities, the binary total mass, and the mass ratio). Since Doppler observations of the brighter binary component determine 5 Kepler parameters (period, velocity amplitude, eccentricity, phase, and position of periapsis), while the same spectroscopy yields the mass of the primary, the combined Doppler + microlensing observations would be overconstrained by 6 + (5 + 1) - (7 + 1) = 4 degrees of freedom. This makes possible an extremely strong test of the microlensing solution. We also introduce a uniform microlensing notation for single and binary lenses, we define conventions, summarize all known microlensing degeneracies and extend a set of parameters to describe full Keplerian motion of the binary lenses.Comment: 51 pages, 8 figures, 2 appendices. Submitted to ApJ. Fortran codes for Appendix B are attached to this astro-ph submission and are also available at http://www.astronomy.ohio-state.edu/~jskowron/OGLE-2009-BLG-020

    MOA-2009-BLG-387Lb: A massive planet orbiting an M dwarf

    Get PDF
    We report the discovery of a planet with a high planet-to-star mass ratio in the microlensing event MOA-2009-BLG-387, which exhibited pronounced deviations over a 12-day interval, one of the longest for any planetary event. The host is an M dwarf, with a mass in the range 0.07 M_sun < M_host < 0.49M_sun at 90% confidence. The planet-star mass ratio q = 0.0132 +- 0.003 has been measured extremely well, so at the best-estimated host mass, the planet mass is m_p = 2.6 Jupiter masses for the median host mass, M = 0.19 M_sun. The host mass is determined from two "higher order" microlensing parameters. One of these, the angular Einstein radius \theta_E = 0.31 +- 0.03 mas, is very well measured, but the other (the microlens parallax \pi_E, which is due to the Earth's orbital motion) is highly degenate with the orbital motion of the planet. We statistically resolve the degeneracy between Earth and planet orbital effects by imposing priors from a Galactic model that specifies the positions and velocities of lenses and sources and a Kepler model of orbits. The 90% confidence intervals for the distance, semi-major axis, and period of the planet are 3.5 kpc < D_L < 7.9 kpc, 1.1 AU < a < 2.7AU, and 3.8 yr < P < 7.6 yr, respectively.Comment: 20 pages including 8 figures. A&A 529 102 (2011

    Frequency of Solar-Like Systems and of Ice and Gas Giants Beyond the Snow Line from High-Magnification Microlensing Events in 2005-2008

    Get PDF
    We present the first measurement of planet frequency beyond the "snow line" for planet/star mass-ratios[-4.5<log q<-2]: d^2 N/dlog q/dlog s=(0.36+-0.15)/dex^2 at mean mass ratio q=5e-4, and consistent with being flat in log projected separation, s. Our result is based on a sample of 6 planets detected from intensive follow-up of high-mag (A>200) microlensing events during 2005-8. The sample host stars have typical mass M_host 0.5 Msun, and detection is sensitive to planets over a range of projected separations (R_E/s_max,R_E*s_max), where R_E 3.5 AU sqrt(M_host/Msun) is the Einstein radius and s_max (q/5e-5)^{2/3}, corresponding to deprojected separations ~3 times the "snow line". Though frenetic, the observations constitute a "controlled experiment", which permits measurement of absolute planet frequency. High-mag events are rare, but the high-mag channel is efficient: half of high-mag events were successfully monitored and half of these yielded planet detections. The planet frequency derived from microlensing is a factor 7 larger than from RV studies at factor ~25 smaller separations [2<P<2000 days]. However, this difference is basically consistent with the gradient derived from RV studies (when extrapolated well beyond the separations from which it is measured). This suggests a universal separation distribution across 2 dex in semi-major axis, 2 dex in mass ratio, and 0.3 dex in host mass. Finally, if all planetary systems were "analogs" of the Solar System, our sample would have yielded 18.2 planets (11.4 "Jupiters", 6.4 "Saturns", 0.3 "Uranuses", 0.2 "Neptunes") including 6.1 systems with 2 or more planet detections. This compares to 6 planets including one 2-planet system in the actual sample, implying a first estimate of 1/6 for the frequency of solar-like systems.Comment: 42 pages, 10 figure

    MOA-2010-BLG-477Lb: constraining the mass of a microlensing planet from microlensing parallax, orbital motion and detection of blended light

    Get PDF
    Microlensing detections of cool planets are important for the construction of an unbiased sample to estimate the frequency of planets beyond the snow line, which is where giant planets are thought to form according to the core accretion theory of planet formation. In this paper, we report the discovery of a giant planet detected from the analysis of the light curve of a high-magnification microlensing event MOA-2010-BLG-477. The measured planet-star mass ratio is q=(2.181±0.004)×103q=(2.181\pm0.004)\times 10^{-3} and the projected separation is s=1.1228±0.0006s=1.1228\pm0.0006 in units of the Einstein radius. The angular Einstein radius is unusually large θE=1.38±0.11\theta_{\rm E}=1.38\pm 0.11 mas. Combining this measurement with constraints on the "microlens parallax" and the lens flux, we can only limit the host mass to the range 0.13<M/M<1.00.13<M/M_\odot<1.0. In this particular case, the strong degeneracy between microlensing parallax and planet orbital motion prevents us from measuring more accurate host and planet masses. However, we find that adding Bayesian priors from two effects (Galactic model and Keplerian orbit) each independently favors the upper end of this mass range, yielding star and planet masses of M=0.670.13+0.33 MM_*=0.67^{+0.33}_{-0.13}\ M_\odot and mp=1.50.3+0.8 MJUPm_p=1.5^{+0.8}_{-0.3}\ M_{\rm JUP} at a distance of D=2.3±0.6D=2.3\pm0.6 kpc, and with a semi-major axis of a=21+3a=2^{+3}_{-1} AU. Finally, we show that the lens mass can be determined from future high-resolution near-IR adaptive optics observations independently from two effects, photometric and astrometric.Comment: 3 Tables, 12 Figures, accepted in Ap

    MOA 2010-BLG-477Lb: Constraining the mass of a microlensing planet from microlensing parallax, orbital motion, and detection of blended light

    Get PDF
    Microlensing detections of cool planets are important for the construction of an unbiased sample to estimate the frequency of planets beyond the snow line, which is where giant planets are thought to form according to the core accretion theory of planet formation. In this paper, we report the discovery of a giant planet detected from the analysis of the light curve of a high-magnification microlensing event MOA 2010-BLG-477. The measured planet-star mass ratio is q = (2.181 ± 0.004) × 10-3 and the projected separation is s = 1.1228 ± 0.0006 in units of the Einstein radius. The angular Einstein radius is unusually large θE = 1.38 ± 0.11 mas. Combining this measurement with constraints on the microlens parallax and the lens flux, we can only limit the host mass to the range 0.13 \u3c M/M \u3c 1.0. In this particular case, the strong degeneracy between microlensing parallax and planet orbital motion prevents us from measuring more accurate host and planet masses. However, we find that adding Bayesian priors from two effects (Galactic model and Keplerian orbit) each independently favors the upper end of this mass range, yielding star and planet masses of M * = 0.67+0.33- 0.13 M and mp1.5+0.8- 0.3 M JUP at a distance of D = 2.3 ± 0.6kpc, and with a semi-major axis of a = 2 +3- 1AU. Finally, we show that the lens mass can be determined from future high-resolution near-IR adaptive optics observations independently from two effects, photometric and astrometric. © 2012. The American Astronomical Society. All rights reserved.

    Ultrafast Evolution and Loss of CRISPRs Following a Host Shift in a Novel Wildlife Pathogen, Mycoplasma gallisepticum

    Get PDF
    Measureable rates of genome evolution are well documented in human pathogens but are less well understood in bacterial pathogens in the wild, particularly during and after host switches. Mycoplasma gallisepticum (MG) is a pathogenic bacterium that has evolved predominantly in poultry and recently jumped to wild house finches (Carpodacus mexicanus), a common North American songbird. For the first time we characterize the genome and measure rates of genome evolution in House Finch isolates of MG, as well as in poultry outgroups. Using whole-genome sequences of 12 House Finch isolates across a 13-year serial sample and an additional four newly sequenced poultry strains, we estimate a nucleotide diversity in House Finch isolates of only ∼2% of ancestral poultry strains and a nucleotide substitution rate of 0.8−1.2×10−5 per site per year both in poultry and in House Finches, an exceptionally fast rate rivaling some of the highest estimates reported thus far for bacteria. We also found high diversity and complete turnover of CRISPR arrays in poultry MG strains prior to the switch to the House Finch host, but after the invasion of House Finches there is progressive loss of CRISPR repeat diversity, and recruitment of novel CRISPR repeats ceases. Recent (2007) House Finch MG strains retain only ∼50% of the CRISPR repertoire founding (1994–95) strains and have lost the CRISPR–associated genes required for CRISPR function. Our results suggest that genome evolution in bacterial pathogens of wild birds can be extremely rapid and in this case is accompanied by apparent functional loss of CRISPRs
    corecore