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Binary microlensing event OGLE-2009-BLG-020 gives a verifiable

mass, distance and orbit predictions.
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ABSTRACT

We present the first example of binary microlensing for which the parameter

measurements can be verified (or contradicted) by future Doppler observations.

This test is made possible by a confluence of two relatively unusual circumstances.

First, the binary lens is bright enough (I = 15.6) to permit Doppler measure-

ments. Second, we measure not only the usual 7 binary-lens parameters, but also

the “microlens parallax” (which yields the binary mass) and two components of

the instantaneous orbital velocity. Thus we measure, effectively, 6 ’Kepler+1’

parameters (two instantaneous positions, two instantaneous velocities, the bi-

nary total mass, and the mass ratio). Since Doppler observations of the brighter

binary component determine 5 Kepler parameters (period, velocity amplitude,

eccentricity, phase, and position of periapsis), while the same spectroscopy yields

the mass of the primary, the combined Doppler + microlensing observations

would be overconstrained by 6 + (5 + 1) − (7 + 1) = 4 degrees of freedom. This

makes possible an extremely strong test of the microlensing solution.

We also introduce a uniform microlensing notation for single and binary

lenses, we define conventions, summarize all known microlensing degeneracies

and extend a set of parameters to describe full Keplerian motion of the binary

lenses.

Subject headings: Galaxy: bulge – gravitational lensing – stars: binary

1. Introduction

Gravitational microlensing is nowadays a well established method for discovering binary

and planetary systems (e.g. Gould 2009; Gaudi 2010). By analyzing flux variations in time,

microlensing measures a wide range of system parameters including the distance and mass

of the binary, its orbital and proper motion as well as the mass ratio and separation of its

components (cf. Dong et al. 2009a; Bennett et al. 2010).

Previous studies of gravitational microlensing events have had little or no possibility

for post factum observational confirmation of derived system parameters, since usually the

53RoboNet

54Probing Lensing Anomalies NETwork (PLANET)

90Royal Society University Research Fellow



– 5 –

stars involved in this one-time event are too faint and too distant to be within reach of

current astrometric or spectroscopic instruments. Some exceptions come from astrometric

confirmation of the nature of a single lens event with direct imaging done with Hubble Space

Telescope (HST) (Alcock et al. 2001; Gould et al. 2004; Koz lowski et al. 2007). Also in some

cases it was possible to take spectra of the microlensed source that confirm the microlensing

interpretation (Gaudi et al. 2008b). But the fact of an event being caused by microlensing

is the main subject of these tests rather than the values of previously derived parameters.

This does not mean that the microlensing measurements have no tests. Indeed there are

many self-consistency checks including the agreement of mass and distance with the amount

of light coming to us (e.g. Gaudi et al. 2008a; Bennett et al. 2010), as well as testing of the

derived values of the orbital parameters being consistent with bounded Keplerian orbits (e.g.

Sumi et al. 2010, Batista et al. 2011 in prep., Yee et al. 2011 in prep.). The only issue is the

shortage of possibilities to verify the results with independent or direct observations.

In this work we present analysis of one microlensing event (OGLE-2009-BLG-0201)

caused by a ∼ 1.1M⊙ binary system passing near the line of sight to an ordinary red giant

star. We derive system parameters using the same, standard methods that are applied to

other binary and planetary microlensing events. Because of a peculiarity of this event, i.e.,

that it is caused by a relatively close by (≈ 1.1 kpc) and bright (I = 15.6) binary star, there

is a possibility of direct verification of the derived parameters with follow-up spectroscopic

measurements.

The data gathered on this event are described in Section 2. The fitting of the microlens-

ing model to the light curve is presented in Section 3, and the physical parameters of the

system are calculated in Section 4. In Section 5 we discuss the results and, in particular, in

Section §5.3 we present how the microlensing solutions can be tested by radial velocity mea-

surements. In the Conclusions (§6) we advocate for radial velocity follow-up observations to

confirm the nature of the event and its parameters, which constitute a general test of the

microlensing method, in particular the accuracy of the parameters currently being derived

for microlensing planets.

In Appendix A we present microlensing parameters together with all required conven-

tions, introduce a uniform microlensing notation, extend work of Gould (2000) by introducing

parameters describing full Keplerian motion of the lens components, and review symmetries

known in microlensing. In Appendix B we derive the transformation between the microlens-

ing and Keplerian orbit parameters.

1http://ogle.astrouw.edu.pl/ogle3/ews/2009/blg-020.html

http://ogle.astrouw.edu.pl/ogle3/ews/2009/blg-020.html
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2. Observational data

2.1. Collection

On 15 February 2009, Heliocentric Julian Date (HJD) ∼ 2454878, the Optical Gravi-

tational Lensing Experiment (OGLE) team announced ongoing microlensing event OGLE-

2009-BLG-020 detected by the Early Warning System (EWS)2 and observed on the 1.3m

Warsaw Telescope in Las Campanas Observatory in Chile. The event was also monitored by

the Microlensing Observations in Astrophysics (MOA) 1.8m telescope at Mt. John University

Observatory in New Zealand. On HJD′ ∼ 4915 (HJD′ = HJD− 2450000) it could be seen

that the light curve was deviating from the standard Paczyński (1986) model, and follow-up

observations by other telescopes began: First with the 2.0m Faulkes South (FTS) telescope

in Siding Spring, Australia and the 2.0m Faulkes North (FTN) telescope in Haleakala, Hawaii

operated by RoboNet3; the 36cm telescope at Kumeu Observatory4, New Zealand and the

36cm telescope at Bronberg Observatory, Pretoria, South Africa as a part of Microlensing

Follow-Up Network (µFUN)5. Then, shortly before the first caustic crossing occurred (HJD′

∼ 4917.3) observations began on the 1m telescope on Mt. Canopus belonging to University

of Tasmania (part of PLANET Collaboration) and the 36cm telescope in Farm Cove Ob-

servatory6 (also µFUN). Essential data near highest magnification (HJD′ ∼ 4917.6, March

27th) were gathered by the Bronberg telescope. During the caustic exit (HJD′ ∼ 4917.75)

there were observations started on the SMARTS 1.3m Cerro Tololo Inter-American Observa-

tory (CTIO) and the 40cm telescope in Campo Catino Austral Observatory (CAO)7, Chile.

Some data where gathered by other observers but too short coverage of the event or, in some

cases, big error bars prevented us from including these in this analysis. Intense monitoring

of the event was performed until HJD′ ∼ 4920.

The whole light curve consists of 9 years of data with 121 days during the course of the

visible magnification, of which 5 days constitute intense follow-up observations. The OGLE

telescope performed observations in V and I bands, and the CTIO telescope in V , I and H

bands, which permit measurements of the color of the magnified source star. Together we

2http://ogle.astrouw.edu.pl/ogle3/ews/ews.html

3http://robonet.lcogt.net/

4http://kumeu.blogspot.com/

5http://www.astronomy.ohio-state.edu/microfun/

6http://www.farmcoveobs.co.nz/

7http://www.campocatinobservatory.org/

http://ogle.astrouw.edu.pl/ogle3/ews/ews.html
http://robonet.lcogt.net/
http://kumeu.blogspot.com/
http://www.astronomy.ohio-state.edu/microfun/
http://www.farmcoveobs.co.nz/
http://www.campocatinobservatory.org/


– 7 –

have 5333 data points in the light curve with 2247 during the course of the magnification

event.

We take the OGLE-III V- and I-band light curves from the projects final data reductions

(Udalski et al. 2008) and calibrate against the Galactic bulge photometric maps (Szymański

et al. 2011 in prep.), so that the OGLE magnitudes reported in this paper are standard V

(Johnson) and I (Cousins) magnitudes.

The Bronberg data were reduced using MicroFUN’s image subtraction pipelines based

on Woźniak (2000). The MOA data were reduced using the survey image subtraction pipeline

(Bond et al. 2001). CTIO, CAO, FCO and Kumeu data were reduced using DoPHOT pack-

age Schechter et al. (1993). The UTAS, FTN and FTS data were reduced using PySIS

(Albrow et al. 2009).

We remove the effects of a differential extinction from the unfiltered Bronberg data by

using light curves of non-variable field stars that have similar color to that of the source (for

details see Dong et al. 2009a).

The CTIO telescope’s camera, ANDICAM, takes simultaneous exposures in H- and

I-band. Because the data quality in H-band is lower than that in I-band, we include only

the latter into the microlensing fit. However, we use the H-band data to calculate (I −H)

color of the source. To do so we cross-match the H-band data with the 2MASS catalog8 and

calibrate neighboring stars of the lens/source to 2MASS H-band magnitudes.

2.2. Preparation

As calculation of microlensing magnification is very time consuming, we bin the data to

speed up the fitting procedure. On every part of the light curve and for every observatory

individually we carefully choose the number of bins and their start and end points depending

on the local slope of the light curve and specifically avoid incorporating seasonal gap (for

wide bins) and daily gaps (for short bins) into any bin. Before the actual binning we fit

straight lines to the points in the planned bins and check that the points look consistent

with the lines. We also check that the slopes for adjacent bins are comparable. We discard

3-σ outliers from the straight line fits as well as all data points with observational error-

bar bigger than 5 times median of the error-bars of nearby points. Our human supervised

binning procedure coupled with extensive use of helper algorithms yields 374 binned data

points in total.

8http://www.ipac.caltech.edu/2mass/overview/access.html

http://www.ipac.caltech.edu/2mass/overview/access.html
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We rescale the error bars to have χ2
d/dof ∼ 1 for each separate data set (usually coming

from different observatories). This is an iterative process wherein we use our best-fit model

to evaluate χ2
d,i values for each of the data points (where d enumerates data sets and i is the

index of the given data point in this set), then based on these values we find coefficients Yd and

Sd (as described below) needed to rescale error bars with the formula: σnew
d,i = Yd

√

σ2
d,i + S2

d ,

where σd,i and σnew
d,i are the uncertainties before and after rescaling. After rescaling we repeat

the fitting procedure and find the new values of the coefficients.

To find values of the rescaling coefficients, for each data set d, we sort all points by the

magnification given by the microlensing model. Then we construct the cumulative distri-

bution of χ2
d,i as a function of the sorted index. The goal is to choose the Sd to make the

cumulative distribution of χ2
d,i a straight line. Then we can choose the scale Yd to match the

requirement of χ2
d/dof ∼ 1.

If we see some systematic variations in the residuals from the best-fit model that are

unlikely to be caused by the microlensing phenomena, we investigate whether the deviations

are supported by more than one dataset or whether it is likely that observations were affected

by high airmass or large seeing. If so, we remove these data as outliers.

Figure 1 presents the light curve of the event. All data points are aligned to the best fit

microlensing model. Inset shows the portion of the light curve during highest magnification

– when the source is crossing the caustics.

3. Microlensing model

To explain the observed variation in brightness, we fit a binary microlensing model to

the light curve. In this scenario the light from a distant source is bent by the binary star

(lens) crossing near the light of sight, causing apparent brightening of the source.

In this work we closely follow the notation presented by Gould (2000), where Dl denotes

the distance to the lens, Ds the distance to the source, M the total mass of the lens, rE the

Einstein radius, and θE the angular Einstein radius. In Appendix A we propose an extension

of this notation to describe full orbital motion of the binary lens.

3.1. Parametrization

The initial mathematical model used to describe this event is constructed using 7 pa-

rameters: the mass ratio of the lensing binary (q), the projected separation of its components
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(s0) in units of the Einstein radius, the angle of the lens-source relative motion projected

onto the sky plane with respect to the binary axis (α0), the Einstein crossing time (tE), i.e.,

the time required for the lens to travel a distance of one Einstein radius, the time of the

closest approach of the adopted center of the lens to the source (t0), the lens-source sepa-

ration at this time in units of the Einstein radius (u0), and the source radius in the same

units (ρ). See Appendix A for conventions and full definition of all parameters. We define

the primary/secondary as the heavier/lighter component respectively.

In addition, there are two parameters for each observatory that connect the microlensing

magnification with the instrumental fluxes in a given band. These are the values of the source

flux and an additional flux not being magnified but observed in the same direction in the

sky (a blend). If there is any light coming from the lens, it will be included in this blend.

To find a microlensing model we use the method developed by S. Dong and described

in Dong et al. (2006) and its modification in Dong et al. (2009b, Section 3).

We introduce a few modifications. For example, we calculate the “caustic width” (w)

used for the (w, q) grid of lens geometries when searching for initial solutions. Instead of the

planetary regime (q ≪ 1) we are now in a stellar binary regime, i.e., q ∼ 1. We can calculate

the shorter diameter of the central caustic with the equation:

w =
4qs2

(1 + q)2
(1)

based on work by An (2005). Unlike the formula of Chung et al. (2005, eq. 12) used by

Dong et al. (2009b) the above formula is useful for any mass ratio, although it is accurate

only to about 20% for lens separations 0 < s < 0.5 and accurate to a factor of 2 for s < 0.7

and stellar mass ratios (above s ∼ 0.7 we are close to intermediate causitic geometry with

resonant caustic). Usually a much better accuracy is not required as one uses the caustic

dimensions as a basic scale for further searches, although for our event’s geometry and chosen

parametrization a more accurate formula is beneficial.

We find that combining the ideas used in both formulae gives us much more accurate

results. Namely we divide the Equation (12) of Chung et al. (2005) by the factor (1 + q)2

making it usable for any mass ratio. This modified recipe is good to about 0.5% for binary

separations 0 < s < 0.5 and to about 25% for 0.5 < s < 0.7, as we get closer to resonant

caustic regime. The final formula by which we calculate the shorter diameter of the central

caustic is derived to be:

w =
4q| sin3 φc|

(1 + q)2(s + s−1 − 2 cosφc)2
(2)

with the parameter φc given by Eq. (10) in Chung et al. (2005).
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For wide lenses (e.g. s > 2 for stellar mass ratios) Equation (2) could be multiplied by√
1 + q to produce an estimate of the short diameter of the caustic that is usable for our

purposes but is a less accurate approximation.

The (1 + q)2 factor can be used as well to modify the Equation (11) of Chung et al.

(2005) formula for calculating the longer diameter of the central caustic. Although it is

usable for stellar binary mass ratios, it is accurate only to the factor of 2 for 0 < s < 0.5 (5

for 0.5 < s < 0.7).

In our method we also modify the parametrization of the Markov Chain Monte Carlo

(MCMC) χ2 minimization by using (u0/w) rather than u0 (impact parameter). When we

observe a near-cusp caustic crossing or cusp approach in the light curve we can expect that

the value of (u0/w) will correlate less with the changes in lens geometry given by q and s.

This is the case in our model for which the dependence of u0 on q and s is strong but nearly

vanishes when u0 is divided by w.

3.2. Searching for solutions

First we fit a 7 parameter microlensing model by (after Dong et al. 2009b) creating a

broad grid in 3 parameters (log q, logw, α) and performing minimization in the remaining

4 parameters, which are chosen to be: t0, (u0/w), teff(≡ u0tE), and t∗(≡ ρtE). The values of

the fluxes (2 for each observatory) are calculated analytically with the least-squares method.

With this standard parametrization we are not able to find a satisfactory solution, in a sense

where all data sets can be aligned in a coherent way.

We then extend our model by taking into account the Earth orbital motion during the

course of the event. This so called parallax effect is described with 2 additional parameters.

We use the geocentric parallax formalism (An et al. 2002; Gould 2004), wherein we utilize

πE = (πE,N , πE,E) as model parameters (see Appendix A.2 for definition). The parameters

α0, t0, and u0, which previously described a straight trajectory of the lens in front of the

source, now describe the trajectory we would see if the Earth’s velocity was constant through-

out the course of the event and not subject to gravitational acceleration. For the value of

this constant velocity we take the real Earth velocity at some fiducial time t0,par ≡ 4917.52,

and since the shift between real source position and the straight trajectory is by definition

equal to zero at this chosen time, it is convenient to fix it close to some important features

of the light curve, in our case it is a time between the caustic crossings.

By performing minimization in a similar manner as previously, but with a 9 parameter

model, we find a solution capable of explaining the shape of the observed variability. The
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parameters of this model are gathered in Table 1. We have tested whether there are other

solutions emerging from known degeneracies. Our best model has a binary separation smaller

than the Einstein radius. We find no solution with a “wide” geometry given by the s ↔ s−1

degeneracy.

The magnitude of the parallax (πE) together with the angular size of the Einstein radius

(θE) yield the total mass of the lens (M) and a distance to the lens (Dl) (e.g. An et al. 2002).

After Gould (2000) we have:

Ml =
θE
κπE

, κ ≡ 4G/(c2AU) ≈ 8.1 mas M⊙
−1 (3)

Dl = AU/πl, πl = θEπE + πs (4)

where we derive θE from the source radius (ρ) in units of rE and the measurement of the

angular radius of the source in physical units (θ∗, see section 4.1.1) with the equation:

θE = θ∗/ρ. We assume the source to be in the Galactic Bulge at Ds = 8 kpc, and thus the

source parallax is πs = 0.125 mas.

The total mass derived from the best ‘parallax-only’ solution is 0.84M⊙ and the distance

is 0.61 kpc. This is in rough agreement with the position of the lens (assuming that all

blended light is comming from the lens) on the color-magnitude diagram (CMD) and the

assumption that the binary companions belong to the main sequence.

However, there are still some structures in the residuals of the fit, which we hope will

be reduced by extending our model by introducing new parameters describing the orbital

motion of the lens.

3.3. Expanding the model

3.3.1. Linear orbital motion approximation

The canonical way of introducing orbital motion of the lens into the microlensing model

is to add two parameters describing instantaneous velocities in the plane of the sky of the

secondary binary component relative to the primary. As we expect that the duration of the

binary microlensing perturbation to be only a fraction of the orbital period, the assumption is

that these velocities do not change much during the course of the event. Thus, one keeps them

constant and uses a linear approximation of the position of the lens components as a function

of time: α(t) = α0−γ⊥(t−t0,par) and s(t) = s0+ṡ(t−t0,par) = s0(1+γ‖(t−t0,par)). Examples of

microlensing events modeled using this approximation can be found in: Albrow et al. (2000);
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Jaroszynski et al. (2005); Dong et al. (2009a); Ryu et al. (2010); Hwang et al. (2010). More

discussion of these parameters can be found in §A.4.

We fit our light curve with this, now 11 parameter, model and notice significant im-

provements in the goodness of fit (χ2 changed from 370.29 to 352.70). This indicates that

orbital motion is an important effect in this event. The fit also reveals a very strong de-

generacy between two model parameters, namely πE,N and lens angular velocity (γ⊥). We

discuss this further in Section 4.2.

3.3.2. Full Keplerian orbit

Although this linear approximation works well for a large subset of microlensing events,

in order to allow comparison with the radial velocity (RV) measurements it is profitable to use

the full Keplerian orbit parametrization. In addition to being more accurate, the additional

advantage of this approach is to avoid all unbound orbital solutions (with eccentricity ≥ 1)

and to enable the introduction of priors on the values of orbital parameters directly into

MCMC calculations, if one decides to adopt that approach.

We describe the orbit of the secondary component relative to the primary by giving 3

cartesian positions and 3 velocities at one arbitrarily chosen time (t0,kep). For convenience we

utilize the same time (t0,par) used for calculating the parallax shifts (t0,kep = t0,par = 4917.52).

As described above (§3.2), our extended microlensing model (with parallax parameters)

carries information about the mass ratio, the total mass of the lens, and the physical scale in

the lens plane, so together with the six instantaneous phase-space coordinates it comprises

a complete set of system parameters (except systemic radial velocity). This, for example,

allows us to calculate the relative RV at any given time.

Let rx ≡ s0 · DlθE be the projected binary separation in physical units. We define the

instantaneous orbital velocities after Dong et al. (2009a, see Appendix) as rxγ where rxγ‖
and rxγ⊥ are the instantaneous velocities in the plane of the sky, parallel and perpendicular to

the projected binary axis respectively, and rxγz is the relative RV, i.e., the relative velocity

of the two components perpendicular to the plane of the sky. We note that γ⊥ is the

instantaneous angular velocity in the plane of the sky and γ‖ is equal to ṡ/s0. We use the

convention that γz > 0 for movement toward the observer; this is opposite to convention

usually used in RV measurements (see discussion in §A.5).

Without loss of generality we set the cartesian coordinate system to have its first two

axes in the plane of the sky, the origin in the primary component of the lens, and to be

rotated in a way that the first axis coincides with the binary axis at the chosen time t0,kep.
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Then, the 3-dimensional position of the secondary at t0,kep can be described by the vector

(s0, 0, sz) and the 3-dimensional velocities described by (γ‖, γ⊥, γz), where we have introduced

one more parameter: the position along the line of sight (sz) measured in units of rE. See

§A.5 for conventions.

In all, there are now 13 microlensing parameters, in addition to the 2nobs flux parameters,

where nobs = 12 is the number of observatories. As this is a full description of the system, it

is possible to calculate all properties in physical units as well as standard Kepler parameters

of the orbit – i.e., eccentricity (e), time of periapsis (tperi), semi-major axis (a) and 3 Euler

angles: longitude of ascending node (Ωnode), inclination (i), and argument of periapsis (ωperi).

Having those we can find the exact position of the lens components at any given time, which

in turn specifies the lens geometry, and the projected position of the source relative to this

geometry.

3.4. Priors and their transformation

3.4.1. Priors on orbital motion

The output of the Monte Carlo Markov Chain (MCMC) consists of a set of points in

the parameter space. We call this set “a chain”, and every individual solution “a link” in the

chain. The density of the points in a given space bin is proportional to a likelihood of this

bin. This would be true if we assumed uniform priors on all our fit parameters. However,

if we perform a MCMC in the set of parameters (x1, x2, x3, ...), which are given by some

transformation function from another set of parameters (p1, p2, p3, ...) for which we can find

physically justified priors, then those priors have to be converted to the fit coordinates by

multiplying them by a Jacobian of this transformation: ||∂(p1, p2, p3, ...)/∂(x1, x2, x3, ...)||.

We perform microlensing calculations using the 6 instantaneous cartesian phase-space

coordinates. However, our intuition about priors is better in the space of Keplerian param-

eters. Thus we need to construct transformation function and evaluate its Jacobian. In the

Appendix B we derive formulae for jkep = ||∂(e, a, tperi,Ωnode, i, ωperi)/∂(s0, α0, sz, γ‖, γ⊥, γz)||.

We assume flat priors on values of eccentricity, time of periapsis, log a and ωperi. To

incorporate the fact that orbital angular momentum vector can be oriented randomly in

the space, we multiply prior by ||∂(Ωnode, cos i)/∂(Ωnode, i)|| = | sin i|. So our orbital motion

prior, in coordinates of fit parameters, is equal to jkep| sin i|a−1.
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3.4.2. Priors on lens parameters

We also include priors on the lens parameters as expected from the simple Galactic

model. Our trial fits to the light curve (with only Keplerian priors) show that the lens

has substantial proper motion (of order 11 − 16 mas yr−1) and is located close to the Earth

(0.5−2.4 kpc). These suggest that most of the observed proper motion is due to lens velocity

itself (Earth, at the time of the event, is traveling toward the Galactic Bulge, and the effect of

the source velocity on the relative proper motion is suppressed by the distance factor). This

high proper motion yields linear velocities of 25− 150 km s−1. Also the allowed directions of

the lens proper motion lie between 90◦ and 180◦ relative to the Galactic North (i.e., between

Galactic East direction and Galactic South direction), this, in connection with high proper

motion yields high probability of a substantial component perpendicular to the disk. This

picture is more consistent with Galactic thick disk kinematics rather than thin disk. Thus,

in order to impose priors on the lens parameters, we assume that the lens belongs to the

thick disk population. This is a less constraining assumption than thin disk, as thick disk

allows for grater velocity dispersions.

We follow the approach of Batista et al. (2011, §5.1), but using parameters suitable

for a thick disk. In the exponential disk we use scale height = 0.6 kpc and scale length

= 2.75 kpc. The probability density of the lens mass is assumed to be proportional to M−1.

We expect the velocity dispersion of the thick disk stars to be (40, 55) km s−1 in the North

and East Galactic directions respectively. The expected mean velocity is (0, 200) km s−1,

where we account for asymmetric drift of the stars of 20 km s−1 behind the Galactic rotation.

The expected velocity of the Galactic Bulge sources is zero and its velocity dispersion is

(100, 100) km s−1.

From the disk model we assign prior probability density for certain values of lens dis-

tance, mass, and lens-source relative proper motion (Dl, M and µ). We translate these

priors to microlensing parameters (tE, θE, πE) using the Jacobian derived by Batista et al.

(2011):

jgal =

∥

∥

∥

∥

∂(M,Dl,µ)

∂(θE, tE,πE)

∥

∥

∥

∥

=
2πrelMµ2

tEθEπ2
E

D2
l

AU
(5)

where M = θE/κπE, Dl = AU/(πrel + πs), πrel = θEπE, and µ = θE/tE.

3.5. MCMC results

The results from MCMC are presented in Figure 3, where likelihoods obtained from

the chain are projected onto the number of 2-d planes, one for each pair of parameters.
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Those likelihoods are weighted by the priors as calculated above. We present plots in a

“typically expected” scale for each parameter to show how well each of them was measured.

We also provide insets to show the detailed shape of the likelihood contours (in under-

diagonal panels). The diagonal panel for a given parameter shows the posterior likelihood

marginalised along all other dimensions. More exact numerical values of parameters from

the region of maximal likelihood can be found in Table 1.

To preserve clarity, the described Figure does not show symmetric solutions that origi-

nate from the static binary ecliptic degeneracy, which is discussed in Section 5.1 and given by

Equation (16). These can be seen in the right panel of Figure 5 projected onto the πE,N -γ⊥
plane.

4. Physical parameters

4.1. Source star

From OGLE-III photometric maps for the Galactic Bulge (Udalski et al. 2008; Szymański

et al. 2011 in prep.) we construct a color magnitude diagram (CMD) of stars within 4′ around

the location of the event (Figure 2). The position of the centroid of the Red-Clump Giant

stars on the CMD is derived to be:

((V − I), V, I)RC,OGLE = (1.93 ± 0.02, 17.39 ± 0.04, 15.46 ± 0.04) . (6)

We take the intrinsic centroid of the red clump (RC) to be MI,RC,0 = −0.25 ± 0.05

(Bennett et al. 2010), and the color (V − I)RC,0 = 1.08 ± 0.06 after Bensby et al. (2010,

§4.5), we calculate MV,RC,0 = 0.83 ± 0.08 and assume the distance to the Galactic Center

to be 8.0 ± 0.3 kpc (Yelda et al. 2010). The location of the observed microlensing event

is (l, b) = (1◦33′29′′,−3◦49′21′′) in Galactic coordinates. When we take into account the

inclination of the Galactic Bar we infer that the RC stars in the field are slightly closer than

Galactic Center. From Nishiyama et al. (2005) we find a distance modulus smaller by 0.05

mag. This leads to a RC distance modulus of 14.47 ± 0.08, which yields estimates of the

reddening along the line of sight.

(E(V − I), AV , AI) = (0.85 ± 0.06, 2.09 ± 0.12, 1.24 ± 0.10) . (7)

This gives RV I = AV /E(V−I) = 2.4 which is comparable to other estimates of the extinction

law toward the Bulge (eg. Bennett et al. 2010).

We assume that the microlensing source is located behind the dust causing this redden-

ing. Applying this average extinction to the source brightness obtained directly from the
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microlensing fit to the calibrated OGLE data:

((V − I), V, I)OGLE = (1.929 ± 0.002, 18.36 ± 0.04, 16.43 ± 0.04) (8)

we obtain the dereddened color and brightness of the source star:

((V − I), V, I)0,OGLE = (1.08 ± 0.06, 16.27 ± 0.13, 15.19 ± 0.11) (9)

4.1.1. Source radius

Using color-color relations from Bessell & Brett (1988) we infer that the source is a giant

star of the spectral type K and we find (V −K)0 = 2.50± 0.15. We assume solar metallicity

for the source star. Then from Houdashelt et al. (2000), we find that the temperature for

a cool solar-metallicity giant star with V − I = 1.08 should be about 4650 K ± 100 K.

This is in agreement with Ramı́rez & Meléndez (2005) who give the temperature equal to

4600 K ± 100 K.

To find the value of the surface gravity we use the Berdyugina & Savanov (1994) em-

pirical relation for G-K giants and subgiants given by:

log g = 8.00 logT + 0.31M0,V + 0.27[Fe/H ] − 27.15, with an accuracy of ± 0.25 dex (10)

where we use M0,V = 1.80 ± 0.10 to obtain log g = 2.71 ± 0.26.

Kervella et al. (2004) calibrated the color-brightness relations for giants. We take their

relation (14) with dereddened visual magnitude of the source star V0 = 16.27 ± 0.13 and

(V −K)0 color found above. The resulting angular radius of the source is

θ∗ = (4.45 ± 0.40)µas. (11)

4.1.2. Limb darkening coefficients

Knowing the temperature of the source star and its surface gravity we find the values of

the linear limb-darkening coefficients. We use Claret (2000) Table 30 with the assumption

of solar metallicity and turbulence velocity of 2 km s−1. Uncertainties on these parameters

have a very minor influence on the values of limb-darkening coefficients, with uncertainties

in temperature being dominant factor. For bands in which the observations have been

performed we find:

uV = 0.795, uR = 0.716, uI = 0.618, uH = 0.429. (12)
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For calculations of the magnification of the limb-darkened source we use coefficients in

the form of Afonso et al. (2000, §3.1). Their linear limb-darkening coefficient Γ is related to

commonly used coefficient u with this relation: u = 3Γ/(Γ + 2). Thus, we have:

ΓV = 0.721, ΓR = 0.627, ΓI = 0.519, ΓH = 0.334. (13)

4.2. The source trajectory curvature degeneracy

There is a substantial degeneracy in the microlensing model between the angular velocity

of the lens in the plane of the sky (γ⊥) and the North component of the microlensing parallax

(πE,N), which can be seen clearly on Fig. 3 (the intersection of row 8 and column 6).

This degeneracy can be predicted to be present in a wide range of microlensing events.

It is a purely geometrical effect – both rotation of the lens axis and parallax motion of

the Earth have similar effects on the apparent source trajectory in the lens plane. This

modification in both cases could be described, to the first order, as a curvature of the source

trajectory. Hence the curvature needed to explain observed changes in magnification can be

a linear combination of both effects.

Here we stress the importance of this degeneracy. Our model minimization shows that

it could be very severe and have a significant impact on the final value of the distance to the

lens and its mass. Figure 4 shows two models, both fitting the observed light curve well, with

extremely different values of πE,N and γ⊥, which lead to a very similar effective trajectory

of the source on the plane of the lens and finally to similar goodness of fit. Masses and

distances derived from these solutions differ by a factor of 2. Note, that both trajectories

overlap more closely when plotted in units of source radius rather than time.

In the general case of microlensing events observed toward the Galactic Bulge and with

the parallax signal measured, it is very common that the πE,E component is well measured

and πE,N has substantial uncertainty. Looking at Figure 3 in Park et al. (2004) one sees that,

if we decompose the parallax vector (πE) into components parallel (π‖) and perpendicular

(π⊥) to the direction of the Earth acceleration (near the peak of the event), actually it is the

π‖ that is well measured and the big uncertainties are in π⊥. Since the Earth acceleration

vector most of the year lies near the East-West direction, the uncertainty in π⊥ usually

translates to uncertainties in πE,N .

For this event, the caustic crossing occurred on 27 March 2009, so very close to the

vernal equinox when the apex of the Earth motion was almost directly toward the Galactic

Bulge. That is why the direction of Earth acceleration was very close to East, so πE,N

(≈ πE,⊥ in this case) is not well constrained.
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Because of this “curvature” degeneracy we are unable to accurately determine the dis-

tance and the mass of the lens from the microlensing fit only. We need to use other known

system parameters such as observed magnitudes and colors of the lens (where we assume

that all blended light is comming from the lens). We therefore restrict the set of solutions

to those that are consistent with theoretical color-color and color-magnitude relations.

4.2.1. Choosing solutions consistent with the theoretical isochrones

We take a set of Y2 (Yonsei-Yale) Isochrones9 (Demarque et al. 2004) and from the

microlensing fit to the V -, I- and H-band data we infer the magnitudes of the blend. Each

link in the chain of solutions gives slightly different values of the observed magnitudes of the

blend but, for reader information, we quote the most common ones:

((V − I), I, (I −H))b = (1.316 ± 0.01, 15.680 ± 0.01, 1.409 ± 0.05) . (14)

We assume that all non magnified light comes from the binary lens and that the components

of the lens are main sequence stars. Given the mass ratio q = 0.27 from the microlensing fit

we neglect the light input from the secondary and check the consistency of the mass of the

primary, its distance, and its luminosity against the theoretical isochrones.

For initial tests we take the isochrone with solar metallicity and age. For each solution

(link) we calculate the distance and mass of the primary and from the interpolated isochrone

we find the theoretical magnitudes in V , I and H that it should have if seen with no

reddening. Then, assuming the slope of the reddening curve AI/AV = 0.6 and AH/AV =

0.17, we find the amount of interstellar reddening in V -band (AV ) that we should subtract

in order to shift the observed magnitudes closest to the theoretical values. We throw out all

solutions requiring negative reddening or more reddening than the total amount seen toward

the Galactic Bulge source. We also add gaussian weights to each individual link depending

on how close it could be placed to the theoretical magnitudes with respect to the error bars,

and a weight corresponding to the value of the reddening assuming that it should be about

1 ± 0.5 mag kpc−1 in V .

The set of solutions with highest weights lies near dAV /dD = 1.4 mag kpc−1, distance

≈ 1 kpc and mass ≈ 1M⊙ for the primary. From the most probable values of parallax

parameters (πE,N ≈ −0.2 and πE,E ≈ 0.2) we see that the likely direction of the transverse

velocity of the lens relative to the line of sight is perpendicular to the Galactic plane. The

9http://www.astro.yale.edu/demarque/yyiso.html

http://www.astro.yale.edu/demarque/yyiso.html
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value of the relative proper motion taken from the equation µ = θE/tE is near 12 mas yr−1,

which at the distance of 1 kpc translates to a linear transverse velocity of ∼ 60 km s−1.

These, further constrained kinematic parameters, strengthen our prediction (from §3.4.2)

that it is more likely that the lens belongs to a thick disk population. Thus, for final

isochrone consistency checks, instead of a Solar-like isochrone, we choose one with an age of

10 Gyr, a sub-solar metallicity ([Fe/H ] = −0.5) and an α-enhanced mixture ([α/Fe] = 0.3)

which would be more typical for stars with this kind of kinematics.

We prepare a subset of our chain links in which every link has weight added depending

on how well it matches with the theoretical isochrone. The region of parameter space that

coincides with the magnitudes from the isochrone, has:

Dl = 1.1 ± 0.1 kpc M1 = 0.84 ± 0.03M⊙
dAV

dD
= 1.4 ± 0.2 mag kpc−1 (15)

4.2.2. Choosing solutions consistent with the spectroscopic mass

Even if some assumptions in the procedure described in the previous section happen to

be incorrect, we will see this clearly from the first spectrum taken of the object. The mass of

the primary could be estimated from the spectrum, and it will be easy to redo the filtering

of solutions with this additional information.

In either case, the selected set of solutions could be subsequently tested against the

observed RV curve to see if the orbital parameters derived from the microlensing fit are

consistent with it.

5. Discussion

5.1. Degeneracies

Nine of the microlensing parameters are known from the fit with very high precision.

However, there are two pairs of parameters for which the values are imperfectly measured

(see Figure 3). The first, obvious, pair is the position and velocity along the line of sight

(sz and γz), which do not have direct effects on the observed magnification. They are only

limited by the requirement of e < 1 and by the shape of the Keplerian orbit projected on the

plane of the sky – to be precise, only by the segment of the orbit that was covered by the

lens components during the high magnification period. The other pair of parameters that

was not measured well are πE,N and γ⊥, which are degenerate as was described in Section
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4.2. We partially break this degeneracy into discrete regions by choosing only those solutions

that are in agreement with other information we have on the event (sections 4.2.1 and 4.2.2).

Because the mass of the lens depends on the magnitude of the vector πE = (πE,N , πE,E)

it does not change when the sign of the πE,N component changes. This leads to 2 regions

along the πE,N -γ⊥ degeneracy that yield the same mass.

There is one more degeneracy from which our model suffers, i.e., the orbiting binary

ecliptic degeneracy (see §A.4). We note that the ecliptic degeneracy happens when the

direction of the Earth acceleration is constant: the one obvious case, is when the source lies

on the ecliptic (hence the name of this degeneracy), but the other is when the timescale of

the event is much shorter than the characteristic timescale of the changes of the direction of

acceleration. This is more likely to occur if the microlensing event happens when Earth is

moving toward or away from the source.

This is the case in OGLE-2009-BLG-020, for which the peak magnification happened

near the vernal equinox. The Earth acceleration at that time is directed toward East and its

direction varies very slowly in time. Note also that at that time πE,⊥ ≈ πE,N so, following

(A16), from any set of parameters we can obtain an analogous set by changing:

(u0, α0, πE,N , γ⊥) → −(u0, α0, πE,N , γ⊥) (16)

In Figure 5, we see the projection of our set of solutions on the plane of πE,N and γ⊥. The

two allowed regions correspond to positive u0 (on top) and negative u0 (bottom) solutions.

The left panel shows the full chain while the right panel shows the subset of links that are

consistent with the isochrones chosen in Section 4.2.1. Each of the continuous regions from

the right panel is split into 2 regions (for positive πE,N and negative πE,N ), giving 4 separate

regions in total.

Note that none of the degeneracies described in this section is exact, this leads to

different likelihoods between the 4 regions.

5.2. Symmetries

Changing the sign of γ⊥ without changing the other components of the velocity flips the

orbit, which manifests itself as a change of some Euler angles: Ωnode → −Ωnode and i → π−i.

As microlensing cannot directly measure position and velocity along the line of sight

every solution has its copy mirrored by the plane of the sky, i.e., sz → −sz and γz → −γz.

For orbit elements it means: Ωnode → π − Ωnode and ωperi → ωperi − π.
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Without loss in generality we perform all calculations assuming γz > 0 at the chosen

time (t0,kep). Radial velocity measurements will have information on the sign of the radial

velocity – we can then simply mirror our set of solutions using the above prescription.

5.3. Test of the microlensing solution with Radial Velocity

Every link in the MCMC chain represents a complete set of parameters of the binary

lens. It yields not only the mass, distance and separation in physical units, but also all

Keplerian parameters of the orbit. Thus we can calculate the RV curve for any period of the

binary.

Assuming the observations of the RV curve of the primary are taken, we can assign to

every link the likelihood that it is consistent with those data. We derive the radial velocity

for any time the data were taken and, allowing the systemic velocity of the center of mass of

the binary to vary, we calculate the likelihoods for every point. In this way we construct a

new set of links weighted by both the microlensing light curve and the radial velocity curve.

This new set of solutions yields new, most probable, values of all lens parameters, which

may or may not coincide with the values derived from the microlensing only solution. This

would be a test of the microlensing solution.

If the new values of the parameters lie outside the 3-σ limits of the microlensing solution

we can say that our method failed. By contrast, if solutions, which are consistent with the

RV curve, lie near the best-fit values we obtained from microlensing, we can not only believe

our solution, but we can also read off all parameters of the binary, which are not given by

one or the other method alone. For example, the radial velocity curve will give us the period

and systemic radial velocity, which we cannot read from the microlensing light curve alone.

However, microlensing will yield the inclination, orientation on the sky and the 2-d velocity

of the binary projected on the plane of the sky.

5.3.1. Example of the test

We illustrate this test in Figure 6. The Figure shows (in the background) the likelihoods

derived from microlensing solution projected onto 2-d planes of 6 orbital parameters, the

mass, distance and mass ratio (this is a subset of the whole chain chosen using the method

described in §4.2.1). We take one, exemplary set of binary parameters and simulate the

radial velocity curve consisting of 15 measurements taken from March to October 2011

and 15 measurements in a similar period in 2012. We then test our chain against this RV
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curve assuming a measurements precision of 0.5 km s−1. The solutions with the highest joint

likelihoods (from microlensing and RV curve fitting) are overplotted on each panel (in color

on under-diagonal panels, and as 10-σ contour on over-diagonal panels). The initial set of

parameters we chose to generate the RV curve is marked with open circles.

We see that all orbital parameters of the “seed” set of parameters are retrieved by the

RV comparison process (as the links selected to be consistent with RV curve lie near the

circles). This shows the selective power of the radial velocity data, which can prove whether

the microlensing solution is wrong or strongly suggest that it is right.

5.3.2. Useful information for RV observations

The selective power of the RV curve holds when the observations are taken through at

least one period of the binary. We have chosen a 2 year span of observations since the period

we derive from our solutions is between 200 and 700 days (2-σ limit).

The binary equatorial coordinates are (18h04m20s.99, −29◦31′08′′.6, J2000.0). The find-

ing chart can be found on the OGLE EWS webpage – the link is given in the footnote in

Introduction. The binary is blended with the “microlensing source” which, as the CMD in

Figure 2 suggests, is a Galactic Bulge giant. The observed magnitudes of the source are

given by Equation (8). The binary has a mass ratio of 0.272, so assuming both components

are main-sequence stars, the majority of the light is coming from the primary. Observed

magnitudes of the binary are given by Equation (14). The binary is 1.3 magnitude brighter

in V and 0.8 mag brighter in I than the giant, however they are of similar brightness in H .

Since the binary is located in the Galactic Disk, we anticipate it will be clearly separated

in the velocity space from the blended Bulge giant. The mass and the distance of the primary,

which we predict from the comparison of the light coming from the binary with the theoretical

isochrone, is given by Equation (15) in §4.2.1. The radial velocity amplitude of the primary

is expected to be 5 ± 1 km s−1.

6. Conclusions

The binary star that manifested itself in the microlensing event OGLE-2009-BLG-020

is the first case of a lens that is close enough and bright enough to allow ground-based

spectroscopic follow-up observations. This makes it a unique tool to test the microlensing

solution.
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We derive lens parameters using the same method by which the majority of planetary

candidates discovered by microlensing are analyzed. We detect a signal from the orbital

motion of the lens in the microlensing light curve. This signal, as well as our measurements

of the orbital parameters of the binary lens, can be confirmed or contradicted by future

observations. We propose a test in §5.3.

Combining the microlensing solution with the radial velocity curve will yield a complete

set of system parameters including 3-d Galactic velocity of the binary and all Keplerian orbit

elements.

This work undertakes an effort to establish a uniform microlensing notation, extending

work of Gould (2000) by including the full set of orbital elements of the binary lens (Appendix

A). We also summarize all known microlensing symmetries and degeneracies.

The method of deriving orbital elements from the 6 phase-space coordinates, used to

parametrize microlensing event, is described in Appendix B. The Fortran codes we use

for transformation of the microlensing parameters to orbital elements and for deriving all

quantities described in the Appendix B will be attached to astro-ph sources of this paper,

and will be published on the author’s web page10.
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A. Notation, Conventions, and Symmetries

Gould (2000) argued that it would be useful to establish a “standard” system of mi-

crolensing notation to both ease comparison of microlensing light-curve fits by different

authors, and to facilitate easy entry into the field by outsiders. Since that time, a number

of new effects have been modelled, forcing the introduction of new parameters. As was pre-

viously the case for the smaller set of parameters listed by Gould (2000), this has resulted

in the emergence of multiple systems of notation, often specifically adapted to the problem

at hand.

In this paper, we have for the first time, fit a microlensing light curve to parameters

representing a complete Kepler orbital solution. Thus, it is appropriate to revisit the question

of notation. Indeed the urgency of developing a common set of not only notation, but also

conventions, is increased, because it is becoming increasingly difficult to compare microlens

solutions of different groups without a “score card”.

To the extent possible, we would therefore like to establish a “standard system” of nota-

tion and conventions. However, our fundamental goal is actually slightly less ambitious: to

establish a “reference system” of notation and conventions. Then, even if various researchers

do not adopt this system, they can still specify how their system is related to this reference

system, which will then enable direct comparison of solutions carried out in different systems,

and also fairly direct translation of parameters from one system to another.

Finally, as the list of parameters being fit grows, so does the exposition of the meaning

of these parameters, repeated in one paper after another, with slight variation. It will be

more convenient (and cheaper) if future authors can simply reference this appendix, perhaps

supplemented by a few words on how their system differs.

Our general approach will be to begin with the Gould (2000) system, and extend it to

new parameters that have “spontaneously” appeared in the literature. The extensions will be

guided first by establishing a logically consistent system, and second (to the extent possible)

adopting the most popular notation previously developed. A big “logical” consideration is

to define parameters that closely parallel observable quantities, so as to avoid introducing

unnecessary degeneracies into the fitting process, as would be the case for some physically

well-motivated parameters that are not directly constrained by the data.

We will outline a notation system that includes 3 “basic” and 3 “higher-order” point-lens

event parameters, 3 additional parameters required to describe static binaries, 2 additional

parameters required to describe binary orbital motion in the plane of the sky, and 4 further

parameters to describe complete orbital motion. In fact, one of these last four (the angular

Einstein radius θE) can logically be (and is) introduced much earlier, although it is not essen-
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tial as fit parameter until the last stage. That is, there are 15 parameters in addition to flux

parameters (fs, fb), describing the source flux and blended flux from each observatory. We

do not include here parameters for source orbital motion (“xallarap”), nor 3-body systems.

The definition of parameters necessarily requires that we specify certain conventions.

We also attempt to make these logically ordered and consistent. Finally, there are two main

classes of degeneracies, one continuous and the other discrete. We trace how these two

degeneracies “evolve” as additional parameters are added to the description of the system.

A.1. Point Lens Parameters: Basic

For point lens events, the almost universally accepted three basic parameters are

(t0, u0, tE) (point lens basic). (A1)

These are the time of closest approach to the lens system “center”, the lens-source projected

separation at that time (in units of the Einstein radius), and the Einstein crossing time.

The meaning of system “center” is obvious in the case of a point lens, but will require

generalization for more complicated systems. Moreover, even tE will require more exact

specification. We retain these three notations, but defer discussion of the generalizations

of their meaning until further below. A derived parameter, which is sometimes used as an

independent fitting parameter in place of either u0 or tE is the “effective timescale”

teff ≡ u0tE. (A2)

A.2. Point Lens Parameters: Higher Order

There are three higher-order parameters that can in principle be measured for point-

lens events, and these lead to a fourth derived parameter. The first two parameters are the

“vector microlens parallax”

πE ≡ (πE,N , πE,E) ≡ (cos φπ, sinφπ)πE. (A3)

Here πE = AU/r̃E, where r̃E is the Einstein radius projected onto the observer plane and

φπ is the direction of the lens motion relative to the source expressed as a counter-clockwise

angle north through east. The mere introduction of πE brings with it a large number of

symmetries and questions of convention, which will grow yet more complicated as binary

lenses come into play. We therefore carefully delineate these in their simpler form here.
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First, it has become customary to adopt the “geocentric framework” (An et al. 2002;

Gould 2004), in which all parameters are measured in the instantaneous frame that is at rest

with respect to the Earth at a specifically adopted time:

t0,par (parameter reference time) (A4)

which is not a fit parameter. Note that the subscript stands for “parameter” (not “parallax”).

Thus, for example, u0 is the distance of closest approach of the source and the “lens center”

(i.e., for point lenses, simply the lens) in this geocentric frame. Similarly, t0 is the time of

this closest approach, and tE is the time it would take to cross the Einstein radius if the

lens-source relative motion were the same as it is as seen from the Earth at t0,par. Since the

Earth velocity is constantly changing, all of these parameters depend on the choice of t0,par.

Finally, the direction φπ (but not the magnitude πE) of the parallax vector also depends on

this choice. In practice, for point lenses, t0,par is chosen quite close to t0 so that this is hardly

an issue. But the issue will become more important for binary lenses.

Second, point-lens parallaxes are subject to 4 related “degeneracies”, which one might

also call “symmetries”. To properly express these, we introduce a different set of basis

vectors πE = (πE,‖, πE,⊥), where πE,‖ is the component parallel to the apparent acceleration

of the Sun (projected on the sky) in the Earth frame at t0,par and the pair (πE,‖, πE,⊥) is

right-handed (Fig. 3 of Gould 2004). We also must define a convention for the sign of u0:

u0 > 0 ⇔ (lens passes source on its right) (A5)

as in Gould (2004, Fig. 2). Then

1) πE,⊥ Degeneracy: Typically, πE,‖ is much better determined than πE,⊥ (Gould et al.

1994) because the former is determined at third order in time and the latter at fourth

order (Smith et al. 2003). This can lead to elongated error ellipses in the πE plane.

Only for sufficiently long events (or strong parallax signal) is this degeneracy broken.

2) u0 Degeneracy: In the limit that the Earth’s acceleration can be regarded as constant,

there is a perfect symmetry between ±u0 solutions, with only minor adjustment of

other parameters (Smith et al. 2003).

3) Ecliptic Degeneracy: In the limit of constant direction of acceleration (as would be

the case for a source on the ecliptic) there is a perfect degeneracy

(u0, πE,⊥) → −(u0, πE,⊥) (A6)

(Jiang et al. 2004; Poindexter et al. 2005). Hence, sources lying near the ecliptic (i.e.,

all Galactic Bulge sources) may suffer an approximate degeneracy. We note that at
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times when Earth is moving toward or away from the Galactic Bulge (near equinoxes),

the direction of Earth acceleration projected on the sky varies slowly in time. This

significantly extends the effect of this degeneracy.

4) Jerk-Parallax Degeneracy: This is a discrete degeneracy described in detail by Gould

(2004).

The third higher-order point-lens parameter is ρ, the radius of the source in units of

the Einstein radius. Of course, ρ is only rarely measurable in point-lens events and is very

frequently measured in binary events, and so is usually called a “binary-lens” parameter, but

it logically precedes the introduction of binary events, so we include it here. The angular

radius of the source θ∗ can almost always be measured from the instrumental color and

magnitude of the source (Yoo et al. 2004). When ρ is also measurable, then one can measure

the angular Einstein radius, and so the proper motion:

θE =
θ∗
ρ

; µ =
θE
tE

. (A7)

If both θE and πE are measured, this immediately gives both the lens mass, and the

lens-source relative parallax (Gould 1992)

M =
θE
κπE

; πrel = θEπE, κ ≡ 4G

c2 AU
(A8)

Note that the “proper motion” in Equation (A7) is geocentric (i.e., in the instantaneous

frame of the Earth at t0,par). To compare with heliocentric proper motions derived from

astrometry at successive epochs one must convert (Janczak et al. 2010)

µhelio − µgeo =
v⊕,⊥
AU

πrel =
v⊕,⊥
AU

θ2E
κM

(A9)

where v⊕,⊥ is the Earth velocity at t0,par projected on the plane of the sky, and where

µgeo = µπE/πE. Clearly this conversion can only be carried out precisely if πE is known

although the rhs shows that the magnitude of the difference can be strongly constrained

even if there are only fairly crude limits on πE.

Note also, that future astrometric microlensing measurements may determine the (geo-

centric) vector proper motion µgeo even if no parallax information is obtained (Høg et al.

1995; Miyamoto & Yoshii 1995; Walker 1995).

At this point we also introduce

t∗ ≡ ρtE, (A10)
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the source self-crossing time (in fact, a source radius crossing time). Often, t∗ is used in

place of ρ as a fitting parameter. Note that sometimes ρ is written as ρ∗ (in analogy to t∗),

but for ρ there is no need to subscript because there are no competing quantities with this

same name. Hence, we advocate simplifying the notation and dropping the subscript “∗”.

A.3. Static Binary-Lens Parameters

A static binary requires 3 additional parameters:

(q, s0, α0) (static binary parameters) (A11)

These are the mass ratio of the two components (q=m2/m1=M2/M1), their projected sepa-

ration in units of the Einstein radius, and the direction of lens-source relative motion (i.e.,

lens motion relative to the source) with respect to the binary axis (which points from primary

toward secondary). At the beginning one should specify which component of the binary one

calls a “primary”. (The angle α0 is counter-clockwise. The fractional mass of the primary,

m1, is defined as M1/M .) There are many points to note.

First, the separation is frequently called “d” (rather than “s”). However, this is the

standard symbol for the derivative operator, and so should not be used for other quantities

that are likely to appear in the same expressions with this operator.

Second, heretofore, s0 and α0 have been written simply as s and α. And indeed, for static

binaries there is no confusion in doing so, since these are time-invariant quantities. And, for

this reason, it remains appropriate to drop the “0” subscript in static analysis. Nevertheless,

we introduce this subscript here to maintain consistency with notation developed below.

Third, the choice of t0,par is no longer obvious. For high-magnification events, it might

be taken as the approximate time of closest approach to the center of magnification, which

closely parallels the choice for point lens events. But it might also be chosen to be a particu-

larly well defined time, like a caustic crossing. In any case, since it is not even approximately

obvious, it must be specified.

Fourth, in generalizing from point lens to binary lens, there is no longer a unique system

“center” by which to define u0 and t0. However, since this does not present substantive

problems until there is orbital motion, we defer discussion of this point until the next section.

Fifth, in the absence of parallax effects, static binaries are subject to an exact degeneracy

(u0, α0) → −(u0, α0) (binary degeneracy). (A12)
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Moreover, even for orbiting binaries, it is always possible to express solutions in a form with

u0 > 0 and 0 ≤ α0 < 2π. Hence, in our view, negative u0 should be reserved for solutions

that include parallax.

Finally, even if parallax is incorporated into the solution, static binaries will be subject

to a “static binary ecliptic degeneracy”

(u0, α0, πE,⊥) → −(u0, α0, πE,⊥) (static binary ecliptic degeneracy). (A13)

Note that for lenses seen toward the Galactic Bulge, the directions of positive (πE,‖, πE,⊥)

are typically (West,North) for austral summer and autumn or (East,South) for austral winter

and spring. Hence, from a practical standpoint, it is often easy to locate degenerate πE,⊥
solutions by seeding with a sign reversal of πE,N .

A.4. Binary-Lens Parameters: Projected Orbital Velocity

We begin by introducing the components of orbital motion

γ ≡ (γ‖, γ⊥) (at t0,kep), (A14)

which are the instantaneous components of velocity of the secondary relative to the primary,

respectively parallel and perpendicular to the primary-secondary axis at a fiducial time t0,kep.

These are essentially γ‖ = (ds/dt)/s0 and γ⊥ = −dα/dt, and they are detected effectively

from the changing shape and changing orientation of the caustic, respectively. In this form,

their relation to the projected physical orbital velocity is particularly simple,

∆v = DlθEs0γ, (A15)

where Dl is the distance to the lens. Note that (γ‖, γ⊥) is a right-handed system on the plane

of the sky, just like (N,E) and (πE,‖, πE,⊥)

The introduction of these two parameters brings with them two degeneracies. First,

allowing for orbital motion reintroduces the πE,⊥ continuous degeneracy. This appeared

originally for point lenses because of rotational symmetry, which is the physical reason that

πE,⊥ was fourth-order in time while πE,‖ was third-order (see Section A.2). Now it reappears

because of a degeneracy between πE,⊥ and the rotational degree of freedom of orbital motion,

i.e., as a correlation between πE,⊥ and γ⊥ (cf. §4.2). Second, to the degree that the ecliptic

degeneracy is present (i.e., to the degree that the acceleration of the Earth does not change

direction during the event), it takes the form

(u0, α0, πE,⊥, γ⊥) → −(u0, α0, πE,⊥, γ⊥) (orbiting binary ecliptic degeneracy). (A16)
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Logically, t0,par and t0,kep can be different, and so we have defined them separately. There

may be cases for which one would want them to be different, but we cannot think of any.

Therefore, we suggest in general that,

t0,par ≡ t0,kep, (suggested). (A17)

We will adopt this convention in what follows. (This will also help to avoid confusion involv-

ing α0, which is defined at t0,par, and s0, which, together with other phase-space parameters

of the orbit, is defined at t0,kep.)

We now return to the problem of specifying a “system center”. For simplicity, let us

begin by assuming that the binary center of mass is chosen. Then the problem of determining

t0 and u0 for a given model is identical to that of a single lens (as discussed in Section A.2)

except that t0,par may then differ substantially from t0 (since it is convenient to choose t0,par
near the highest magnification), but this poses no problem of principle. And, in particular, if

s < 1, then the center of mass and center of magnification coincide, which greatly simplifies

the choices. However, if s > 1, one might for example choose the system center to be the

“center of magnification” and t0,par to be approximately the time closest to this center. Then

the difference between t0,par and t0 would be small, but “center of magnification” would not

in general be in rectilinear motion (together with the center of mass). In this example, the

“system center” would be offset from the center of mass by

∆(ξ, η) =

[

q

1 + q

(

1

s(t0,par)
− s(t0,par)

)

, 0

]

, (A18)

where (ξ, η) are the coordinates on the lens plane parallel and perpendicular to the primary-

secondary axis. Note that this offset properly describes the true position of the “center of

magnification” only at the one, chosen time (t0,par) and not at the fit time t0. Again, for the

case just specified, these two times would be very close, so there is little practical impact.

However, in other cases, particularly for resonant caustics of roughly equal-mass binaries,

t0,par might be taken to be near a caustic crossing that is very far from t0. Then specification

of this time becomes extremely important.

For binary lenses with higher-order parameter measurements, one almost always mea-

sures θE. And, because γ⊥ is often degenerate with πE,⊥, it is usually (but not always)

inappropriate to attempt to measure γ without also measuring πE. This means that when

γ is measured one can usually calculate the ratio of kinetic to potential projected energy

(Batista et al. 2011),
E⊥,kin

E⊥,pot
=

κM⊙πE(|γ|yr)2s30
8π2θE(πE + πs/θE)3

. (A19)
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Evaluation of this ratio requires specification of one additional parameter, the source parallax

πs. This is usually known, at least approximately, since most sources are in the Galactic

Bulge.

This ratio must absolutely be less than unity, if the system is bound. Moreover, typically

it is expected to be in the range 0.25 – 0.6. Hence, evaluating this ratio provides a good

plausibility check on the solution. If θE is measured in mas and γ is measured in yr−1 (as

we advocate), then the numerical coefficient in Equation (A19) is 8.14/(8π2) = 0.103.

A.5. Binary-Lens Parameters: Full Kepler Solutions

Full Kepler solutions require two parameters in addition to those already mentioned.

Since the parameters already specified are in the Cartesian system, we advocate making the

last two parameters also Cartesian, namely the instantaneous position and velocity in the

direction perpendicular to the plane of the sky at time t0,kep. Specifically these are sz and

γz, which are defined so that the physical relative 3-dimensional position and velocity of the

secondary relative to the primary are given by

∆r = DlθE(s0, 0, sz), ∆v = DlθEs0(γ‖, γ⊥, γz). (A20)

(see Figure 7). Recall that the x-axis is defined by the position of the secondary relative to

the primary at t0,kep. These are right-handed triads, which means that the radial direction

points toward the observer, which is opposite to the convention of radial-velocity (RV) work.

This conflict is not desirable but is virtually unavoidable. The identification of the x-axis

with the binary axis is extremely firmly rooted in microlensing tradition. There is then only

one way to maintain right-handed 2-dimensional and 3-dimensional systems for γ: the one

adopted above. If we were to choose a left-handed system, it would give rise to substantial

confusion in the calculation of orbits, which involve several cross products. Finally, it will

be very rare that any RV data are obtained on microlensing orbiting binaries. When they

are, one will just have to remember to reverse the sign.

Note that full Keplerian solution is possible for events with πE and θE measured. For

other events one can always use simplified 2-dimensional description of the orbital motion

(§A.4), assuming that the fraction of the orbit travelled by the binary components during

the event is small.

There is one final degeneracy associated with two introduced (radial) parameters. As

with visual binary orbits, there is a perfect degeneracy of

(sz, γz) → −(sz, γz), (A21)
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which can only be broken with the aid of RV measurements. Hence, microlensing solutions

should choose either sz ≥ 0 or γz ≥ 0. The choice will depend on which quantity is more “iso-

lated” from zero when both are permitted free range. However, this choice should definitely

be made to avoid multiple representations of what are in fact identical solutions.

A.6. Summary

Point-lens events are specified by up to 6 parameters (t0, u0, tE,πE, ρ), where πE =

(πE,N , πE,E) is the 2-dimensional parallax vector. This is always a geocentric system, explicitly

if πE is specified and implicitly if it is not. Because πE is a geocentric quantity that depends

on the Earth’s velocity, the definition of all of these quantities (except ρ) requires that a

specific time t0,par be adopted at which the Earth’s velocity and position are evaluated. The

only exception is if πE is itself not specified. These requirements carry over to binary lenses

as well.

If ρ is measured, then it is almost always possible to measure θE = θ∗/ρ because θ∗ can

be determined from the source flux parameters in two bands.

A total of eight parameters are required to specify a binary orbit. Two of these are sec-

ondary/primary mass ratio q and the total mass of the system M = θE/κπE. The remaining

6 are the six Cartesian phase space coordinates of the secondary relative to the primary. In

order to relate microlensing parameters to physical units, one must multiply by rE ≡ DlθE.

The lens distance can be expressed in terms of parameters already specified, plus the source

parallax: Dl = AU/(πEθE + πs). Then all but one of the six phase space coordinates appear

directly as microlensing parameters (s0, 0, sz) and γ = (γ‖, γ⊥, γz), for the positions and

velocities respectively, with all quantities specified at t0,kep. The missing degree of freedom

represented by the “0” in the spatial vector is recovered in α0, which specifies the direction

of lens-source relative motion, measured with respect to the primary-secondary axis at time

t0,par. We recommend t0,kep = t0,par.

For binary lenses, the “system center” must be given explicitly, in order to define

t0, u0, tE. This center must be defined as coordinates on the lens plane as determined at

t0,par, not at t0. See Section A.1.

All coordinate systems are right-handed, either in two dimensions [(N,E), (πE,‖, πE,⊥),

(γ‖, γ⊥)] or three dimensions (γ‖, γ⊥, γz). This means, in particular, that positive γz points

toward the observer.

All relative motion conventions are defined by the motion of the lens (with the source
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thought of as fixed). Thus, first, the sign of u0 is positive if the lens passes the source on its

right. Second, φπ = atan2(πE,E, πE,N) is the angle of lens motion, measured counter-clockwise

relative to North. And third, α0 is the angle of the lens motion, measured counter-clockwise

relative to the primary-secondary axis.

There are two approximate degeneracies, one discrete and one continuous, which prop-

agate through the analysis as more parameters are added. In their “final form” when binary

orbital motion is modeled, the discrete degeneracy is a generalized “ecliptic degeneracy”,

which reverses the sign of the four parameters (u0, πE,⊥, α0, γ⊥). The continuous degeneracy

is between πE,⊥ and γ⊥ (with u0 maintaining the same sign). These degeneracies persist in

simpler form when some of these parameters are not measured. Finally there is a perfect

degeneracy that reverses the signs of (sz, γz), so that the solutions must be restricted to

either sz ≥ 0 or γz ≥ 0 to avoid duplicating identical solutions.

B. Transformation between microlensing and Keplerian orbital parameters

In the process of model optimization we describe every solution by a set of 15 ‘microlens-

ing’ parameters (t0, u0, tE, ρ, πE, θ∗, s0, α0, sz, γ, πs, q). In order to derive positions of

the binary component at every given time we need to know the set of Keplerian parameters.

They are also used for introducing priors on the shape of the orbit since our intuition works

better in the space of orbital elements rather than cartesian phase-space parameters. In this

section we present the formulae we use to transform microlensing parametrization into orbit

elements.

As discussed by Batista et al. (2011) for the case of circular orbits, the full Jacobian of

the transformation from microlensing to physical coordinates, factors into two Jacobians

jfull =

∥

∥

∥

∥

∂(physical)

∂(microlensing)

∥

∥

∥

∥

= jkep · jgal

jkep =

∥

∥

∥

∥

∂(e, a, tperi,Ωnode, i, ωperi)

∂(s0, α0, sz, γ‖, γ⊥, γz)

∥

∥

∥

∥

jgal =

∥

∥

∥

∥

∂(M,Dl,µ)

∂(θE, tE,πE)

∥

∥

∥

∥

=
2πrelMµ2

tEθEπ2
E

D2
l

AU
.

(B1)

Here we focus on jkep. (Note that, as remarked by Batista et al. (2011), strictly speaking

one should consider the parameters θ∗ and ρ separately, rather than θE = θ∗/ρ, but as these

parameters barely vary over the chain, this makes essentially no difference.). The priors in

the microlensing coordinates (used inside the MCMC routine in the transition probability,

or used for weighting the likelihoods obtained from the chain) will be the priors in physical
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parameters multiplied by the Jacobian (jfull).

B.1. Position parameters

We have two systems of coordinates, the first one is relative to the plane of the orbit

and the second is related to the microlensing event. The microlensing system, as described

in Appendix A, has its first axis set by the binary axis projected onto the plane of the sky,

and the third axis toward the observer. For fitting, we use positions (s) and velocities (γ)

in microlensing units. However for the sake of this Appendix we will be using positions and

velocities (r,v) in physical units of AU and AU yr−1. A simple conversion between these

units is given by r = s ·DlθE and v = rxγ, where Dl and θE can be calculated at any time

from the set of microlensing parameters.

In the system of coordinates relative to the orbit, we set the first axis as the direction

of periastron, and the third axis as that of the angular momentum vector. The position of

the body (r′) in this system is given by:

r′ =





cos E − e√
1 − e2 sin E

0



 a r′ = a(1 − e cos E) (B2)

where a is the semi-major axis, e is the eccentricity and E is the eccentric anomaly, which is

defined as an implicit function of time t by the Kepler equation,

n(t− tperi) = E − e sin E , n ≡
√

GM

a3
. (B3)

Here M is the system mass, n is the mean motion, and tperi is the time of periastron.

The velocity in the plane of the orbit (v′) is given by the derivative of position:

v′ =
dr′

dt
=





− sin E√
1 − e2 cos E

0



 a
dE
dt

,
dE
dt

=
n

1 − e cos E , (B4)

where the last result is found by implicit differentiation of Equation (B3). Implicit differen-

tiation also yields
∂E
∂tperi

=
−n

sin E
∂E
∂e

=
2a

3∆t

∂E
∂e

= −dE
dt

(B5)
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B.2. Jacobian of the transformation

The equations for r′ and v′ will be useful for calculating relative positions of the binary

component at any time and for evaluating the Jacobian of the transformation between the

phase-space coordinates used in the microlensing fit and the orbital elements (jkep). This in

turn will be used to construct the full Jacobian (B1) used for weighting the solution, together

with the priors on all ‘physical’ parameters (cf. §3.4.1):

j−1
kep =

∥

∥

∥

∥

∂(s0, α0, sz, γ‖, γ⊥, γz)

∂(e, a, tperi,Ωnode, i, ωperi)

∥

∥

∥

∥

=

(DlθE)−6s−4
0

∥

∥

∥

∥

∂(rx, ry, rz, vx, vy, vz)

∂(e, a, tperi,Ωnode, i, ωperi)

∥

∥

∥

∥

=
jph/kep

(DlθE)6s40
(B6)

To calculate jph/kep we need to evaluate derivatives of every component of (r,v) with

respect to every orbital element. To find ∂r/∂(e, a, tperi) we will calculate ∂r′/∂(e, a, tperi) in

the plane of the orbit and then rotate it to the microlensing system of coordinates using the

rotation matrix R given by the three orbital Euler angles (Ωnode – longitude of ascending

node, i – inclination, ωperi – argument of periapsis):

r = Rr′, v = Rv′ (B7)

where:

R = Rz(Ωnode) · Rx(i) · Rz(ωperi) (B8)

and Rx(β), Rz(β) are the matrix operators of rotation by an angle β around the first and

third axes respectively:

Rx(β) =





cos β − sin β 0

sin β cos β 0

0 0 1



 Rz(β) =





1 0 0

0 cos β − sin β

0 sin β cos β



 (B9)

Figure 8 shows the orientation of the relative orbit with respect to the microlensing-coordinates

system. Conventions used for Euler angles (Ωnode, i, ωperi) can also be read from this Figure.

From Equation (B5) we obtain

∂r′

∂tperi
= −v′,

∂v′

∂tperi
= −a′ ≡ GM

(r′)3
r′ (B10)

∂r′

∂a
= −3∆t

2a
v′ +

r′

a
,

∂v′

∂a
= −3∆t

2a
a′ − 1

2

v′

a
(B11)
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∂r′

∂e
=

sin E
n

v′ −







1
e√
1−e2

sin E
0






a, (B12)

∂v′

∂e
=

sin E
n

a′ +
a cos E

r′
v′ −





0

1

0





a2ne cos E
r′
√

1 − e2
, (B13)

where a′ is the acceleration (not to be confused with a).

We then rotate these derivatives with R:

∂r

∂(e, a, tperi)
= R

∂r′

∂(e, a, tperi)
,

∂v

∂(e, a, tperi)
= R

∂v′

∂(e, a, tperi)
, (B14)

and evaluate ∂r/∂(Ωnode, i, ωperi)

∂r

∂Ωnode

=
∂R

∂Ωnode

r′ =
∂Rz(Ωnode)

∂Ωnode

Rx(i)Rz(ωperi)r
′ (B15)

∂r

∂i
=

∂R

∂i
r′ = Rz(Ωnode)

∂Rx(i)

∂i
Rz(ωperi)r

′ (B16)

∂r

∂ωperi
=

∂R

∂ωperi
r′ = Rz(Ωnode)Rx(i)

∂Rz(ωperi)

∂ωperi
r′, (B17)

and similarly for ∂v/∂(Ωnode, i, ωperi).

From all derived derivatives we construct a 6 × 6 matrix and calculate its determinant,

using LUP matrix decomposition (LU decomposition with partial pivoting) on the lower and

upper triangular matrices. Then, the determinant is given by simple multiplication of all

diagonal elements of the triangular matrices. The Jacobian (jph/kep) is given by the absolute

value of the determinant.

It is useful to note that jph/kep goes to zero proportional to e sin i, so for orbits close to

circular or close to face-on, one must be careful about numerical problems when dividing by

jph/kep.

B.3. Deriving orbital parameters from phase-space parameters

In this section we show how to translate phase-space parameters in the microlensing

system coordinates (r,v) to orbital elements (e, a, tperi,Ωnode, i, ωperi).

The specific orbital energy (ε) and specific relative angular momentum (h) are conserved,
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so they can be calculated given the values of r and v at any time.

ε =
v2

2
− GM

r
= −GM

2a
, h = r× v. (B18)

If we express r in the units of AU, v in the units of AU yr−1, and M in M⊙ then G ≡ 4π2.

The semi-major axis can be calculated from (B18), and the period can be derived from

Kepler’s Third Law:

a = −GM

2ε
P = 2π

√

a3

GM
. (B19)

Next, we find the unit vectors (versors) of the system of coordinates relative to the orbit,

with ẑ parallel to the angular momentum vector, and x̂ parallel to the eccentricity vector11,

e, which is a constant of motion and points in the direction of periastron,

e =
v × h

GM
− r

r
. (B20)

The eccentricity (e = ‖e‖) can also be calculated with formula: 1 − e2 = h2/(GMa).

The 3 versors are then given by,

x̂ =
e

e
, ẑ =

h

h
, ŷ = ẑ × x̂. (B21)

From projections of the positional vector (r) onto the versors (x̂ and ŷ) we calculate

the true anomaly (ν),

sin ν =
ŷ · r
r

cos ν =
x̂ · r
r

(B22)

then the eccentric anomaly,

cos E =
cos ν + e

1 + e cos ν
, (B23)

with the phase ambiguity in E itself resolved by

0 ≤ E ≤ π ⇐⇒ 0 ≤ ν ≤ π, −π < E < 0 ⇐⇒ π < ν < 2π. (B24)

This convention minimizes |tperi − tkep|.

The time of periastron can be derived from the inverted Equation (B3) written for the

current time (t = t0,kep):

tperi = t0,kep −
E − e sin E

n
(B25)

11The eccentricity vector is related to the Laplace-Runge-Lenz vector (A) by a scaling factor e =

A/(GMm)
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The coordinates of the 3 versors describing the orbital coordinate system (x̂, ŷ, ẑ) give

us the full rotation matrix R, defined earlier by Equations (B8),

R =
(

x̂ ŷ ẑ

)

. (B26)

We can use this matrix to find the angles Ωnode, i, and ωperi from the set of 9 Equations (B8)

for every element of R. The inclination, which is always 0 ≤ i ≤ π, is given by:

cos i = R33. (B27)

Then, the longitude of ascending node can be calculated from:

cos Ωnode = − R23

sin i
, sin Ωnode =

R13

sin i
, (B28)

and the argument of periapsis is,

cosωperi = R11 cos Ωnode + R21 sin Ωnode, (B29)

sinωperi = (R21 cos Ωnode − R11 sin Ωnode) cos i + R31 sin i. (B30)

(For a special case of face-on orbits (sin i = 0) we assume ωperi ≡ 0 and calculate Ωnode from:

cos Ωnode = R11 and sin Ωnode = R21)

The relative position of the two binary components at any time, r(t), can be calculated

from Equation (B7) where R is a time-invariant matrix, and r′(t) is given by the Equations

(B2) and (B3).
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Fig. 1.— Light curve of OGLE-2009-BLG-020. Different colors denote 12 data sets and the

solid line shows the best microlensing model. The inset presents the part of the light curve

featuring both caustic crossings.
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Fig. 2.— Color-magnitude diagram for OGLE-III data. The square marks the position of

the red-clump centroid. The circle is the brightness and color of the microlensed source star.

The diamond is the light lying within the aperture that was not magnified (a blend), and the

triangle is the sum of the blend and the source, as seen well before and after the microlensing

event.
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Fig. 3.— 2-d projection of likelihoods in 13-dimensional space of the microlensing parame-

ters, of which the first 10 are the MCMC parameters and the last 3 are the grid (i.e. kept

fixed during the MCMC procedure) parameters. We present plots in typical (or natural)

scale for each parameter for easy assessment of how well each of them is measured. Over-

diagonal panels are the same as under-diagonal ones except that the latter contain insets.

Diagonal panels show the likelihoods of one parameter (displayed on the corresponding hor-

izontal axis) marginalized over all other dimensions. The height of the plots corresponds to

the 7-σ difference. Likelihoods shown are weighted by priors as described in §3.4.
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Fig. 4.— Illustration of the ‘curvature’ degeneracy (§4.2): two microlensing model trajec-

tories (red and blue) with extremely different values of πE,N and angular velocity (γ⊥) lead

to similar source-lens relative trajectories (filled circles in lower right panel) and thus sim-

ilar goodness of fit. Left panels show model trajectories in coordinates normalized by the

timescale of a particular model. Right panels show the same trajectories but with coordi-

nates normalized by the size of the source in each model. Top row shows the projection

of the trajectories and rotating caustics on the plane of the sky, while bottom row shows

projection of the same trajectories on the plane rotating with the lens. (Caustics are plotted

at the times of caustic crossings and 4 days before and after). Filled dots show the source

positions once a day and open circles show the source positions at the same points in time

but with the parallax shift subtracted as if there were no acceleration of the motion of the

Earth. In summary, the different combinations of the effects of parallax and lens rotation

can lead to the same projected source trajectory.
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Fig. 5.— Projection of likelihoods onto πE,N and γ⊥ plane. The left panel shows the full

MCMC chain for solutions with positive u0 (top region) and negative u0 (bottom region).

Links that survived a consistency check with the theoretical isochrone (§4.2.1) are shown in

the right panel.
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Fig. 6.— Likelihoods in the space of Kepler parameters shown in colors in the over-diagonal

panels, and as a gray-scaled background in the under-diagonal panels. The figure illustrates

also how observed RV curve would recover most probable values of parameters when com-

pared with our set of solutions (§5.3). One exemplary solution is chosen from the MCMC

simulation as the “true” underlying binary parameters and is marked with open circles.

Likelihoods of values of Kepler parameters in agreement with both the microlensing light

curve and the radial velocity curve are shown in color in the under-diagonal panels (and as

a 10-σ black contour on the over-diagonal panels).
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Fig. 7.— Definition of the phase-space parameters (s0, 0, sz, γ‖, γ⊥, γz) at t0,kep, describing

motion of the secondary binary lens component (m2) relative to the primary (m1). The

vertical plane is the plane of the sky.
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Fig. 8.— The relative binary orbit which is rotated by three Euler angles: longitude of

nodes (Ωnode), inclination (i), and argument of periapsis (ωperi). The binary components at

the time t0,kep are marked with 2 dots. The z axis points toward the observer; axes marked

with symbols ‖ and ⊥ define the plane that is parallel to the plane of the sky and crosses

the primary component of the binary. The portions of the line that lie behind the plane are

dashed. The base coordinate system is related to the microlensing event such that at the

time t0,kep the first axis coincides with the binary axis projected onto the plane of the sky.

In the situation presented in this figure, the secondary is slightly behind the plane of the

sky (sz < 0) and is about to reach ascending node; its velocity at t0,kep has γ‖ < 0, γ⊥ > 0,

γz > 0.
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Table 1. Best-fit model parameters

parameter unit parallax only parallax + 2 par. motion parallax + full orbit parallax + full orbit

(with priors)

χ2/dof 370.29/361 352.7/359 344.03/357

fit parameters:

t0 [HJD] 4917.266 ± 0.008 4917.253+0.011
−0.009 4917.202+0.059

−0.028 4917.252+0.016
−0.009

u0/w 0.4295 ± 0.0001 0.42921+0.00026
−0.00009 0.42963+0.00060

−0.00030 0.42942 ± 0.00030

teff [days] 4.517 ± 0.011 4.72200 ± 0.032 4.92+0.10
−0.12 4.708+0.053

−0.032

t∗ [days] 0.1127 ± 0.0003 0.11631 ± 0.00080 0.1182 ± 0.0010 0.11595 ± 0.00060

α [o] 188.96 ± 0.09 189.07± 0.11 189.59+0.55
−0.26 189.08 ± 0.14

πE,N 0.45± 0.03 −0.11+0.10
−0.12 −0.5± 0.12 −0.025± 0.075

πE,E 0.141 ± 0.003 0.1468+0.0046
−0.0064 0.224+0.019

−0.069 0.149 ± 0.010

γ⊥ [1/yr] — 2.78+0.41
−0.47 4.2+0.3

−0.5 2.3+0.5
−0.3

γz [1/yr] — — 2.1± 1.5 1.7± 0.6

sz [rE ] — — 0.05+0.17
−0.10 0.0± 0.6

log q −0.580± 0.003 −0.5650 ± 0.0025 −0.5600 ± 0.0060 −0.5650± 0.0060

logw −0.889± 0.005 −0.8538 ± 0.0044 −0.8420+0.007
−0.015

−0.8410± 0.0080

γ‖ [1/yr] — 0.12+0.08
−0.04

0.34± 0.30 0.10± 0.06

derived:

s0 [rE ] 0.4149 0.4261 0.4299 0.4315

q 0.263 0.272 0.275 0.272

tE [days] 81.45 78.57 79.59 76.02

u0 [rE ] 0.05546 0.06010 0.06182 0.06193

Note. — Best-fit parameters for 3 microlensing models with different treatment of lens orbital motion: 1) with the lens as a

static binary, 2) orbital motion of the lens projected onto sky is approximated by linear changes in time, and 3) orbital motion

of the lens is modeled using a full Keplerian orbit. We give the values of the microlensing fit parameters together with 1-σ

limits as obtained from MCMC. The first three sets of parameters are derived from a MCMC run using only likelihoods from

the value of χ2 with no priors. 4) The solution including priors (on the orbital parameters and on the properties of the lens)

lies in 2.2 sigma confidence limit derived from the light-curve χ2 only. (All parameters represent positive u0 solutions – top

region on Figure 5 – which is slightly preferred. To obtain parameters for negative u0 solutions use formula (16) from §5.1)
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