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AN ACTION OF THE POLISHCHUK DIFFERENTIAL

OPERATOR VIA PUNCTURED SURFACES

GABRIEL C. DRUMMOND-COLE AND MEHDI TAVAKOL

Abstract. For a family of Jacobians of smooth pointed curves
there is a notion of tautological algebra. There is an action of sl2
on this algebra. We define and study a lifting of the Polishchuk
operator, corresponding to f ∈ sl2, on an algebra consisting of
punctured Riemann surfaces. As an application we prove that a
collection of tautological relations on moduli of curves, discovered
by Faber and Zagier, come from a class of relations on the universal
Jacobian.

1. Introduction

The study of algebraic cycles on moduli spaces of curves was initiated
by Mumford in the influential article [8]. He developed intersection
theory on such moduli spaces and defined the notion of tautological
classes. These are the most natural algebraic cycles on the moduli
space and many geometric constructions lead to tautological classes.
The collection of tautological cycles generate a distinguished subring
of the Chow ring, known as the tautological ring. A fundamental open
question concerning tautological rings is to understand the space of
all relations among tautological classes. The purpose of this note is
to study the connection between two classes of tautological relations.
The first class of relations was discovered by Faber and Zagier around
2000 in an unpublished work. The second class is based on the study of
tautological classes on the universal Jacobian by Yin [19]. The method
of Yin gives a powerful tool to produce a large class of tautological
relations on moduli of curves. Conjecturally, his method should give a
complete description of tautological rings. The main ingredient in his
approach is the Polischuck differential operator D which acts on the
tautological ring of the universal Jacobian. We will show that there is
a natural lifting of this differential operator to an algebra built from
punctured Riemann surfaces. The lifting of the operator D corresponds
to gluing Riemann surfaces along the punctures and closing punctures
with open discs. Using this combinatorial interpretation of D we are
able to find closed formulas for a certain class of tautological relations
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2 G. C. DRUMMOND-COLE AND M. TAVAKOL

from the Jacobian side. We analyze these relations and show that they
match with a class of Faber–Zagier relations.

Conventions 1.1. Throughout this note we consider algebraic cycles
modulo rational equivalence. Chow rings and cohomology rings are
taken with Q-coefficients.

Acknowledgments. The first author was supported by the Institute
for Basic Science under IBS-R003-D1. The second author was sup-
ported by the Institute for Basic Science under IBS-R003-S1, by the
Max Planck institute for mathematics, and by the Australian Research
Council grant DP180103891.

2. Tautological classes on the universal Jacobian

The tautological ring of a fixed Jacobian variety under algebraic
equivalence was defined and studied by Beauville [1]. Tautological
rings of families of Jacobian varieties under rational equivalence have
been studied extensively since then. For more details see the references
[6, 7, 13, 14, 15]. Here we consider the relative version of this story
under rational equivalence following Yin [19] to which we refer the
reader for precise definitions. Let π : C → S be a family of smooth
curves of genus g ≥ 2 which admits a section s : S → C. In this
article we will assume that the base scheme S is the universal curve
Cg = Mg,1. Consider the relative Picard group Jg = Pic0(C/S) of
divisors of degree zero. It is an abelian scheme of relative dimension g
over the base S. The section s induces an injection ι : C → Jg from C
into the universal Jacobian Jg. The geometric point x on a curve C is
sent to the line bundle OC(x− s) via the morphism ι. For an integer k
consider the associated endomorphism of Jg induced by multiplication
with k on fibers of the family Jg → S.

Definition 2.1. For integers i, j the subgroup CHi
(j)(Jg) of the Chow

group CHi(Jg) is defined as all degree i classes on which the morphism
k∗ acts via multiplication with k2i−j. Equivalently, the action of the
morphism k∗ on CHi

(j)(Jg) is multiplication by k2g−2i+j.

Proposition 2.2. The Beauville decomposition of the Chow group of
Jg has the form CH∗(Jg) =

⊕
i,j CH(i,j)(Jg), where CH(i,j)(Jg) :=

CH
i+j
2

(j) (Jg) for i ≡ j mod 2.

In the following the Chow group of the universal Jacobian equipped
with the intersection product is denoted by (CH∗(Jg), .) and we usually
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drop the product sign to simplify the notation. But there is another
product on the Chow group of Jg:
Definition 2.3. The Pontryagin product x ∗ y of two algebraic cycles
x, y ∈ CH∗(Jg) is defined as µ∗(π

∗
1x·π∗

2y), where π1, π2 : Jg×SJg → Jg
are the natural projections and µ : Jg ×S Jg → Jg is the addition
morphism.

Recall that to an abelian scheme A/S there is an associated Poincaré
line bundle P on A×S A

t trivialized along the zero sections. Here, At

denotes the dual abelian scheme Pic0A/S.

Definition 2.4. A polarization of A/S is a symmetric isogeny λ :
A→ At such that the pullback of the Poincaré bundle via the morphism
(idA, λ) : A → A×S A

t is relatively ample over S. We say that λ is a
principal polarization when λ defines an isomorphism.

Any such polarization induces a line bundle Lλ in the rational Picard
group of A with the following properties:

• The line bundle Lλ is relatively ample over S,
• It is symmetric, i.e. [−1]∗Lλ = Lλ,
• It is trivialized along the zero section.

The first Chern class of Lλ is called the universal theta divisor and
it will be denoted by θ. For more details we refer the reader to [19,
Chapter 2]. Let ℓ be the first Chern class of the Poincaré bundle.

Definition 2.5. The Fourier–Mukai transform F is defined as

F(x) = π2,∗(π
∗
1x · exp(ℓ)).

It gives an isomorphism between (CH∗(Jg), .) and (CH∗(Jg), ∗).
We now recall the definition of the tautological ring of Jg:

Definition 2.6. The tautological ring R∗(Jg) of Jg is defined as the
smallest Q-subalgebra of the rational Chow ring CH∗(Jg) which con-
tains the class of ι∗[C] and is stable under the Fourier–Mukai transform
and all maps k∗ for integers k.

Remark 2.7. It follows that for an integer k the tautological algebra
becomes stable under k∗ as well.

The generators of R∗(Jg) are expressed in terms of the components
of the curve class in the Beauville decomposition. Define the following
classes:

pi,j := F
(
θ

j−i+2
2 · ι∗[C](j)

)
∈ CH(i,j)(Jg).
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We have that p2,0 = −θ and p0,0 = g[Jg]. The class pi,j vanishes for
i < 0 or j < 0 or j > 2g − 2. The tautological class ψ is defined as
ψ := s∗(K), where K is the first Chern class of the relative dualizing
sheaf of the morphism C → S. The pullback of ψ via the natural map
Jg → S is denoted by the same letter. The following fact is proved in
[19, Theorem 3.6]:

Theorem 2.8. The tautological ring of Jg is generated by the classes
{pi,j} and ψ. In particular, it is finitely generated.

2.9. Lefschetz decomposition of Chow groups. The action of the
Lie algebra sl2 on the Chow groups of a fixed abelian variety was studied
by Künnemann [4]. Polishchuk [13] studied the sl2 action for abelian
schemes which works over families. We follow the standard convention
that sl2 is generated by elements e, f, h satisfying:

[e, f] = h, [h, e] = 2e, [h, f] = −2f.

With this notation the action of sl2 on Chow groups of Jg is given by

e : CHi
(j)(Jg) → CHi+1

(j) (Jg) x→ −θ · x,

f : CHi
(j)(Jg) → CHi−1

(j) (Jg) x→ − θg−1

(g − 1)!
∗ x,

h : CHi
(j)(Jg) → CHi

(j)(Jg) x→ −(2i− j − g)x,

The operator f restricted to the tautological ring of Jg is given by the
following differential operator:

D =
1

2

∑

i,j,k,l

(
ψpi−1,j−1pk−1,l−1 −

(
i+ k − 2

i− 1

)
pi+k−2,j+l

)
∂pi,j∂pk,l

+
∑

i,j

pi−2,j∂pi,j .

3. Faber–Zagier relations

Let g ≥ 2 and consider the moduli space Mg of smooth curves of
genus g. Consider the universal curve π : Cg → Mg and denote by
ωπ its relative dualizing sheaf. The first Chern class of ωπ is denoted
by K. In [8] Mumford defined the kappa class κi as the push-forward
π∗(K

i+1). It is an algebraic cycle of degree i. Notice that κ0 = 2g − 2.

Definition 3.1. The tautological ring R∗(Mg) of Mg is defined as the
Q-subalgebra of the rational Chow ring CH∗(Mg) of Mg generated by
kappa classes.
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In unpublished work Faber and Zagier studied the Gorenstein quo-
tient of the tautological ring ofMg. Recall that there is an isomorphism

Φ : Rg−2(Mg) ∼= Q.

This follows from a result of Looijenga [5] which states that Rg−2(Mg)
is at most one-dimensional and from the result of Faber [2] which shows
that κg−2 is nonzero. There is a natural way to extend Φ to a group
homomorphism

Φ : R∗(Mg) → Q,

by requiring that any element is sent to zero unless it is of degree g−2.
Each element x of the tautological ring R∗(Mg) defines a linear map

Φx : R
∗(Mg) → Q

that sends an element y ∈ R∗(Mg) to Φ(x · y) ∈ Q.

Definition 3.2. The Gorenstein quotient of the ring R∗(Mg), denoted
G∗(Mg), is the quotient of R∗(Mg) by the ideal generated by all ele-
ments x for which Φx defines the zero map.

Let
p = {p1, p3, p4, p6, p7, p9, p10, . . . }

be a variable set indexed by the positive integers not congruent to 2
mod 3. The formal power series Ψ is defined by the formula:

Ψ(t,p) =

(
1 + tp3 + t2p6 + t3p9 + . . .

)
·

∞∑

n=0

(6n)!

(3n)!(2n)!
tn

+

(
p1 + tp4 + t2p7 + . . .

)
·

∞∑

n=0

(6n)!

(3n)!(2n)!

6n+ 1

6n− 1
tn.

Let σ be a partition of |σ| with parts not congruent to 2 modulo 3. For
such partitions define rational numbers αn(σ) as follows:

log(Ψ(t,p)) =
∑

σ

∞∑

n=0

αn(σ)t
npσ,

where for σ the partition [1a13a34a4 . . . ], we use pσ to denote the mono-
mial (pa11 p

a3
3 p

a4
4 . . . ). Define

γ :=
∑

σ

∞∑

n=0

αn(σ)κnt
npσ;

then the relation

[exp(−γ)]tnpσ = 0
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holds in the Gorenstein quotient G∗(Mg) of R
∗(Mg) when g−1+|σ| <

3n and g ≡ n + |σ| + 1 (mod 2). In 2013 Pandharipande and Pixton
[9] proved that Faber–Zagier relations hold in the tautological ring of
Mg. It is an open question whether all relations in the tautological
ring follow from Faber–Zagier relations.

3.3. Relations on moduli of curves from the universal Jaco-

bian. The differential operator D provides a powerful tool to produce
tautological relations. The crucial property of D is that it preserves
the rational equivalence of algebraic cycles. Therefore, if we start from
a collection of tautological relations we can produce a larger class by
applying the differential operator D. These relations can be used to
produce tautological relations on moduli of curves. Assume that the
base scheme S is the universal curve Cg = Mg,1 as before.

Definition 3.4. The tautological ring R∗(S) of S is defined to be the
Q-subalgebra of the Chow ring CH∗(S) generated by kappa classes and
the class of the relative dualizing sheaf ωπ of π : S → Mg.

Remark 3.5. Consider the natural morphism π : Jg → S. According to
[19, Corollary 3.8] the pullback homomorphism π∗ identifies R∗(S) with

the subspace
⊕3g−2

i=0 R∗
(0,2i)(Jg) of R∗(Jg). Therefore, we also obtain

relations on the universal curve Cg using the method explained above.
These relations can be pushed down to Mg via the canonical map
Cg → Mg to give relations in R

∗(Mg) as well. All tautological relations
on Cg for g ≤ 19 and on Mg for g ≤ 23 can be recovered using this
method.

Definition 3.6. Let ~ = (j0, j1, . . .) be an ordered set of indeterminates.
Then the Q-linear bracket operation on power series is

{xn}~ := xnjn

Example 3.7. Let A(z) be the power series

A(z) =

∞∑

n=0

(6n)!

(3n)!(2n)!

( z
72

)n
.

The top Faber–Zagier relation of genus 3k − 1 for ~κ is the relation

(3.8) [exp (−{log(A)}~κ)]zk = 0

This relation corresponds to the empty partition in the previous sec-
tion.

Remark 3.9. Replacing z with αz in the definition of A merely multi-
plies the expression on the right side of Equation (3.8) by αk, so the
choice of normalization factor 72 is unimportant.
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Theorem 3.10. Let g = 3k−1. The vanishing of the tautological class
p2k3,1 on the universal Jacobian Jg gives the top Faber–Zagier relation.

Remark 3.11. The precise statement of Theorem 3.10 is that by Re-
mark 3.5 the vanishing of p2k3,1 on Jg gives a relation on the universal
curve Cg over Mg. We obtain a relation on Mg by multiplying with
K and pushing down. In general this would involve a further layer of
complication. But in our case, we will show that our relation on Cg is
in fact the pullback of the top Faber–Zagier relation to Cg via the pro-
jection Cg → Mg. This implies that the multiplication and pushdown
procedure again yields the top Faber–Zagier relation.

The remainder of the paper will be devoted to the proof of this the-
orem. We will begin, in Section 4, by giving an interpretation of the
Polishchuk differential operator and several related operators onR∗(Jg)
and related rings in terms of punctured surfaces. The Polishchuk op-
erator itself is difficult to analyze directly, but some of the related
operators are more amenable to enumerative combinatorics. One such
modified operator will be shown to yield the top Faber–Zagier relation.
Then in Section 5, we will show that in the case of interest, the out-
put of the modified operator in fact coincides with the output of the
Polishchuk operator. As a roadmap, we have the following schematic
chain of proportionalities and equalities:

left hand side
of (3.8)

∝ ∂3k− (q2k3,1) Corollary 4.19

= p̂b ◦ ∂3kc−(q2k3,1)|ξ0=6k−4
Section 5.7 via
Lemma 5.6

= pb ◦∂3k
Poli

(q2k3,1)|ξ0=6k−4 Lemma 4.11

∝
pushforward to Mg of
the image of p2k3,1 under
the Polishchuck opera-
tor

Remarks 4.5
and 4.10

which together assemble to the proof of Theorem 3.10.

Remark 3.12. The conclusion of Theorem 3.10 is not itself surprising.
We know from [19] that this method should give a relation in the tau-
tological ring of Mg. According to [2] it is expected that the space
of degree k relations in the tautological ring of Mg when g = 3k − 1
should be one dimensional. Therefore, we expect to get the unique
known relation up to a scalar multiple, and in that sense the content is
that the scalar multiple is not zero. Our emphasis instead is that the
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method of proof is new—this is a proof of concept that Yin’s theory
can be used effectively to extract concrete relations.

4. Lifting of the Polishchuk differential operator using

punctured surfaces

In this section we study several polynomial algebras related to the
tautological ring of the universal Jacobian R∗(Jg).
Notation 4.1. We use the notation Λq for the polynomial ring Q[qi,j , φ]
on φ and variables qi,j with i ≡ j (mod 2) and i, j ≥ 0. We use

the notation Λ̂q for the further extension of Λq by two more variables:

Λ̂q = Λq[q0,−2, q1,−1].

Remark 4.2. We think of the generator qi,j as representing an orientable
surface of Euler characteristic −j with i boundary components, and
passing to the extended ring corresponds to allowing generators for the
disk and the sphere as well as all other orientable surfaces of finite type.

The evident inclusion and projection are maps of rings between Λq
and Λ̂q. There is a projection π from Λq to R

∗(Jg) defined by

qi,j 7→
i!

2
i+j−2

2

pi,j φ 7→ ψ

4
(4.3)

(killing generators that are out of range). The projection π realizes

R∗(Jg) as a quotient of Λq or Λ̂q. The following differential operators
will be our main players.

Definition 4.4. We define the following differential operators on Λq:

• the one-component gluing operator

∂1 :=
∑

i,j

(
i

2

)
qi−2,j∂qi,j ,

• the two-component gluing operator

∂2 :=
∑

i,j,k,l

1

2
ikqi+k−2,j+l∂qi,j∂qk,l,

• the one-component capping operator

∂′ψ :=
∑

i,j

(
i

2

)
φqi−2,j−2∂qi,j ,

and
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• the two-component capping operator

∂ψ :=
∑

i,j,k,l

1

2
ikφqi−1,j−1qk−1,l−1∂qi,j∂qk,l .

We also give names and notation for linear combinations of these
atomic operators:

∂Poli := ∂1 − ∂2 + ∂ψ Polishchuk operator

∂± := ∂1 ± ∂2 gluing operators

∂c± := ∂1 ± ∂2 + ∂ψ + ∂′ψ surface operators

We call the gluing and surface operators positive or negative according
to the sign of ∂2.
Finally, we use the same formulas, implicitly extending the indexing

of the summations for operators acting on the ring Λ̂q, adding the word
“extended” to the terminology and a hat to the notation.

Remark 4.5. Change of basis reveals that the Polishchuk operator ∂Poli
passes to the quotient R∗(Jg) as the Polishchuk differential operator D
(see Section 2.9).

Remark 4.6 (Warning). The differential operators which act on Λq in
Definition 4.4 are not naively compatible with their extended versions

acting on Λ̂q under inclusion and projection between Λq and Λ̂q.

While the operators are not naively compatible, there is a compati-
bility relation related to some further quotients.

Definition 4.7. We use the notation Λξ for the ring Q[ξi, φ] where

i varies over non-negative integers. We use the notation Λ̂ξ for the

ring Q[ξi, φ], where i ≥ −1. The evaluation from Λ̂ξ and Λξ to R
∗(Cg)

projects φ to ψ
4
, ξi to

κi
4i
, and ξ−1 to 0.

The inverse pullback map pb : Λq → Λξ is the Q-linear map

q0,2n 7→
n∑

r=0

(
n + 1

r + 1

)
φn−rξr + 2n+1φn.(4.8)

The extended inverse pullback map p̂b : Λ̂q → Λ̂ξ[φ
−1] is

q0,2n 7→ ξn + φn.(4.9)

Remark 4.10. As we saw in Remark 3.5 according to [19, Corollary 3.8]
the pullback map π∗ : CH∗(Jg) → CH∗(Cg) descends to an isomorphism
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between the space
⊕3g−2

i=0 R∗
(0,2i)(Jg) and the tautological ring of the

universal curve Cg. If we map our ring Λξ to R
∗(Cg) via

ξn 7→ κn
4n
, φ 7→ ψ

4
,

then our pb descends to his “π∗”. Our formula (4.8) and Yin’s formula
(identity (3.7) in op. cit.):

p0,2n 7→ 1

2n+1

n∑

r=0

(
n+ 1

r + 1

)
ψn−rκr + ψn

differ only by our change of basis (4.3).

Lemma 4.11. Let Λ̃q be the subalgebra of Λq containing only qi,j with
i = j + 2. The following diagram commutes:

Λ̃q Λq Λξ

Λξ[φ
−1]

Λ̂q Λ̂q Λ̂ξ[φ
−1]

∑∞
r=0 ∂

r
Poli pb

∑∞
r=0 ∂̂

r
c− p̂b

Proof. It suffices to check on a monomial ν in the variables qi,j . Write
I for half of the total sum of all i indices in the variables of ν; then

the only nonzero contribution comes from ∂I
Poli

along the top and ∂̂Ic−
along the bottom. Then we are checking that

pb(∂I
Poli
ν) = p̂b(∂̂Ic−ν)|ξ−1=0.

It will be convenient to consider the sums involved in testing this equal-
ity as occurring over surfaces à la Remark 4.2, where boundary compo-
nents are matched up with one another with cylinders (for applications
of ∂1 and ∂2) or with pairs of caps (for ∂ψ and ∂′ψ). Then the sum

making up ∂̂Ic−ν can be indexed over all ordered perfect pairings of
boundary components, along with a choice of “cylinder” or “caps” for
each pair. Note that the condition i = j+2 means that each component
at the beginning is of genus zero.
Many such ordered labeled perfect pairings index the sum on the left

side as well, but some are missing. We will consider a dichotomy of
two types of such missing or mismatched terms. The first type consists
of ordered perfect pairings where at some point in the iterated gluing
procedure a disk (q1,−1) arises. The second type consists of surfaces
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where there is never a disk and where a pair of caps is applied to a

connected surface (i.e., the operator ∂̂′ψ is applied).

For the first type, we note that ∂̂1 and ∂̂′ψ do not act on q1,−1, so
eventually in the gluing procedure the disk (q1,−1 term) must be glued
to some other connected component. This is done either with a cylin-

der (via the two-component gluing operator ∂̂2) or a pair of caps (via

the two-component capping operator ∂̂ψ); then this kind of missing
term arises in pairs. That is, consider pairs which consist of the same
operators in the same order except we swap the first application of a
cylinder or caps between a disk and another surface. Then the eventual
contribution from this pair consists of α(1 − q0,−2φ) for some α. But

then evaluating via p̂b yields p̂b(α)(1 − κ−1φ − 1) which evaluates to
zero when κ−1 = 0.
For the second type in our dichotomy, we perform a similar but more

involved trick, replacing every extended one-component capping (∂̂′ψ)

with an application of a cylinder (∂̂1). The modified ordered labeled
partial pairing which results indeed appears in the indexing set on the
left hand side of the equation in ∂I

Poli
ν. This is because no disks arise

by assumption and no sphere can arise without either a disk or a pair
of caps on the same connected surface. Call this assignment (starting
with an ordered labeled perfect pairing and replacing extended one-
component capping with extended one-component gluing) ζ .
Then it will suffice to show that for each ordered labeled perfect

pairing Υ and the corresponding monomial νΥ, we have the equality

pb(νΥ) =
∑

Υ̂∈ζ−1(Υ)

p̂b(ν̂Υ̂)

∣∣∣∣
ξ−1=0

.

The connected components of the surface which arises from the gluing
indexed by the ordered labeled perfect pairing Υ are in canonical bi-

jection with the connected components of the surface for each Υ̂ in the
summation. Then it suffices to check the above equality for a single
connected component.
So now let Υ− be an ordered pairing (not necessarily perfect, not

labeled) on the boundary components of a connected surface of genus
zero with (n + 1) pairs. These pairs correspond to one component

gluings. Let Υ̂− be a labeled version, where we label each pair either

“cylinder” or “caps”. Let α(Υ̂−) be the number of “cylinder labels”.
Since we began with components of genus zero, and (extended) two-

component gluings and cappings can never create genus, this eventu-
ally correspnods to a surface with no boundary components and Euler
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characteristic −2n. Then we must only show for all Υ− that

n∑

r=0

(
n+ 1

r + 1

)
φn−rξr + 2n+1φn

=
∑

φn+1−α(Υ̂−)
(
ξα(Υ̂−)−1 + φα(Υ̂−)−1

)
,

where the sum on the right is over all Υ̂− that become Υ− by forgetting
the labeling. Then this final equation follows from noticing that there
are 2n+1 elements indexing the sum on the right hand side correspond-
ing to a choice between cylinders and caps for each term in the pairing

Υ−. This 2n+1 polarizes into
(
n+1
r+1

)
choices of Υ̂− with α(Υ̂−) − 1 = r.

There is one term left over on the right, namely φn+1ξ−1, which evalu-
ates to zero. �

We will also want to pick out a particular case.

Notation 4.12. We use the notation β0,2k to denote the coefficient of
q0,2k in ∂

3k
+ (q2k3,1). For consistency in our formulas we let β0,2k+1 be zero.

Example 4.13. To illustrate the method we look at the case g = 2 and
compute the expression ∂3+(q

2
3,1). The monomial q23,1 corresponds to

two vertices and there are three leaves attached to every vertex of the
graph. Every application of the operator ∂1 or ∂2 corresponds to gluing
two half edges. We obtain two distinct isomorphism classes of graphs,
depending on whether there are any self-gluings. In the first case, we
have no self-gluings, and the coefficient of q0,2 is 36 = (3 ·3)(2 ·2)(1 ·1).
In the second case, we have two self-gluings, and the order of gluings
matters, so the coefficient is 54 = 3(3 · 3)2, and so β0,2 is 90. See
Figure 1

Figure 1. The graphs corresponding to ∂32 and ∂2∂
2
1

Our next goal is to count ∂3k− (q2k3,1) in order to relate it to the top
Faber–Zagier relation. It is too hard to directly obtain an explicit closed
form for the coefficients involved in this expression, so we perform a
kind of trick. First we calculate directly a particular evaluation of
∂3k+ (q2k3,1), which is easier both because the positive gluing operator is
easier than the negative and because we’re only interested in a special
case. Then we formally express ∂3k± (q2k3,1) in terms of the (non-explicit)
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coefficients β0,2k. Finally, we use the calculation in the special case to
get an explicit formula for our case of actual interest.
Let us turn to the positive gluing operator. It behooves us to further

investigate the metaphor of Remark 4.2.

Definition 4.14. Let Λ̂Σ be the Q-vector space spanned by homeomor-
phism classes of (possibly disconnected) orientable surfaces with finite
(possibly empty) labeled boundary, and let ΛΣ be the subspace spanned
only by those surfaces with nonpositive Euler characteristic.

Let the gluing operator ∂glue on Λ̂Σ take a surface Σ to the sum of
all surfaces obtained by gluing two boundary components of Σ together.

Let the capping operator ∂cap on Λ̂Σ take a surface Σ to the sum of all
surfaces obtained by capping off two distinct boundary components of
Σ with disks.

There are linear evaluations ρ̂ : Λ̂Σ → Λ̂q and ρ : ΛΣ → Λq which take
disjoint unions to products and connected surfaces with i boundary
components and Euler characteristic −j to qi,j .

Lemma 4.15. The map ρ intertwines

(1) the operators ∂glue on ΛΣ and ∂+ on Λq; that is,

ρ∂glue = ∂+ρ,

and
(2) the operators ∂glue + ∂cap on Λ̂Σ and ∂c,+|φ=1 on Λ̂q, i.e.,

ρ̂(∂glue + ∂cap) = evφ=1 ∂c+ ρ̂.

Proof. Because gluing preserves Euler characteristic, the operator ∂glue
restricts as follows

ΛΣ ΛΣ

Λ̂Σ Λ̂Σ

∂glue

∂glue

so the first statement makes sense.
Applying ∂1 on the right (in either case) corresponds to gluing two

boundary components of the same connected surface, while applying ∂2
corresponds to gluing boundary components of two different connected
surfaces. The coefficient

(
i
2

)
corresponds to the choice of two boundary

components of a surface with i boundary components; the coefficient ik
corresponds to choosing one boundary component each from surfaces
with i and k respectively. The half is there because the formula is
symmetric and otherwise would count each pair twice. Similarly, the
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one-component and two-component capping operators correspond to
the operations that cap two boundary components of a single connected
component or of two distinct connected components, respectively. �

Corollary 4.16. We have the following identity:

∂3k+ q
2k
3,1

∣∣∣∣
q0,n=1

=
(6k)!

8k

(the evaluation happening for all n).

Proof. Let Σ be the disjoint union of 2k pairs of pants. Then

∂3k+ q
2k
3,1 = ∂3k+ ρ(Σ) = ρ∂3kglue(Σ).

But ∂3kglue(Σ) is a sum over the perfect pairings on the 6k boundary
components of Σ along with an ordering of the 3k pairs of the perfect
pairing. Then there are

(6k − 1)!!(3k)! =
(6k)!(3k)!

(3k)!23k
=

(6k)!

8k

of these. �

Let P(n) denote the unordered partitions of the set {1, . . . , n} (see
Appendix B for details on our notation).

Lemma 4.17. We have the following identity:

(4.18)

∞∑

k=0

z2k
∂3k± (q2k3,1)

(3k)!(2k)!
= exp

( ∞∑

n=1

±β2n
(3n)!(2n)!

q0,2nz
2n

)
.

Proof. Since ∂± acts on the bigraded ring Λq by lowering the first grad-
ing by two and preserving the second grading, necessarily ∂3k± (q2k3,1) is
of the form ∑

p∈P(2k)

αp

∏

bi∈p
q0,|bi|

for some coefficient αp depending on the partition p (the partition keeps
track of which copies of q3,1 have been glued together). Each |bi| must
be even for the coefficient to be non-zero, so we may assume |bi| =
2ki now (i.e., αp = 0 if p has an odd length block). Each individual
summand must arise by applying the two-component gluing operator
∂2 precisely 2ki − 1 times and the one-component gluing operator ∂1
precisely ki+1 times in some order to the monomial q2ki3,1 . The sum of all
the terms that arise in this way is then ±β2kiq0,2ki by Definition 4.12.
The sign is negative for the negative gluing operator because ∂2 is
necessarily applied an odd number of times. To get the coefficient αp,
we need to combine these calculations over the blocks bi in the partition
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p. This entails distributing the 3k applications of ∂± into individual
(not necessarily contiguous) blocks of size 3ki. The number of ways of
doing that is

(3k)!∏
bi∈p(

3
2
|bi|)!

,

so we get

∂3k± (q2k3,1) =
∑

p∈P(2k)

(3k)!
∏

bi∈p

±β|bi|
(3
2
|bi|)!

q0,|bi|.

By the exponential compositional formula (reviewed as Corollary B.3),
the exponential generating function for 1

(3k)!
∂3k± (q2k3,1) is the formal ex-

ponential of the exponential generating function for
±β|bi|
( 3
2
|bi|)!

q0,|bi|. These

are precisely the left and right sides of Equation (4.18). �

Corollary 4.19. Write ~q = (q0,0, q0,2, q0,4, . . .). Then

∂3k− (q2k3,1) = 0

is the top Faber–Zagier relation of genus 3k − 1 for ~q.

Proof. First, evaluate the positive version of Equation (4.18) at q0,j = 1.
For the right side use Corollary 4.16. Taking formal logarithms we then
get the equation

∞∑

n=1

β2n
(3n)!(2n)!

z2n = log

( ∞∑

n=0

(6n)!

(3n)!(2n)!

(
z2

8

)n)
= log(A(9z2))

where the rightmost expression uses the series of Example 3.7.
Then the vanishing of the z2n term of the right hand side of Equa-

tion (4.18) for the negative gluing operator is equivalent to the vanish-
ing of the z2n term of the right-hand side, i.e., the zn term (dividing
powers of z by two in the series) of

exp

( ∞∑

n=1

−β2n
(3n)!(2n)!

q0,2nz
n

)
= exp


−

{ ∞∑

n=1

β2n
(3n)!(2n)!

zn

}

~q




= exp
(
−{log(A(9z))}~q

)

(see Definition 3.6 for notation). By Remark 3.9 the factor of 9 does not
affect the equation, and so the vanishing of the zn term here coincides
with the relation of Equation 3.8. �
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5. The cancellation of contributions from ψ-classes

The goal of this section is to complete the proof of Theorem 3.10,
which says that the vanishing of the tautological class p2k3,1 on Jg gives
the top Faber–Zagier relation on the tautological ring of Mg by the
method explained in Remark 3.5.
According to Corollary 4.19 we know that the 3k-fold application

of the negative gluing operator ∂3k− to the monomial p2k3,1 gives the top
Faber–Zagier relation of genus 3k − 1. We also know via Lemma 4.11
that the relation arising from the Polishchuk operator coincides with
that arising from the 3k-fold application of the negative surface oper-
ator ∂3kc− to the same monomial.
However, the negative gluing and negative surface operators differ.

The difference is given by the operator ∂ψ+∂
′
ψ. To complete the proof,

in this section we will show that all contributions of ψ classes cancel

with one other when we consider p̂b ◦ ∂3kc−(p2k3,1).
5.1. Enumerative combinatorics for surface gluing. Our current
and final goal is to perform the enumerative combinatorics for the ap-

plication p̂b ◦ ∂3kc−(p2k3,1).

Lemma 5.2. The expression ∂3kc−q
2k
3,1 can be written as a sum over

graphs as follows.

∂3kc−q
2k
3,1 = (3k)!

3k∑

r=0

(2r − 1)!!φr
∑

χ(Γ)=2r−2k

∏

Γc

−q0,−χ(Γc),

where Γ runs over isomorphism classes of possibly disconnected ordered
trivalent graphs of Euler characteristic 2r−2k with precisely 2k vertices
and 2r leaves and Γc runs over connected components of Γ.

Proof. This essentially follows from Lemma 4.15, which is written in
terms of ∂c+ and surfaces involves the evaluation at φ = 1. However, of
the four constituent operators of the negative surface operator ∂c−, only
the two-component gluing operator changes the number of connected
components (always reducing it by one) and only the capping operators
change the Euler characteristic (always reducing it by two). Therefore
we can recover the overall sign of a term as well as its power of φ from
the combinatorics of the surface. Then isomorphism classes of closed
orientable surfaces equipped with a fixed decomposition into pairs of
pants and disks in which each connected component contains at least
one pair of pants are in natural bijection with isomorphism classes of
trivalent graphs with leaves—vertices correspond to pants and leaves to
disks. The Euler characteristic of a surface made of gluing 2k pairs of
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pants and 2r disks is 2r−2k, while the Euler characteristic of a trivalent
graph with 2k vertices and 2r leaves is r−k. The coefficients (3k)! and
(2r−1)!! come from choosing an order for the gluings and for choosing
a perfect pairing between the caps for the capping operators. �

Recall the extended inverse pullback map, (4.9). We want to apply
this to our calculation of ∂3kc−q

2k
3,1 from Lemma 5.2. The extended inverse

pullback map takes the term −q0,2n corresponding to the connected
component Γc of Euler characteristic −2n to the sum −ξn − φn. We
will reorganize this application of the extended inverse pullback map
into a summation over powers of φ, which will turn out eventually to
have little reliance on the monomial in ξn variables.
For this purpose we introduce several generating functions so that

we can perform the computation in formal series. See appendix A for
our conventions on graphs (in particular the definition of an ordered
graph).

Definition 5.3. Let G+(n,m) be the set of isomorphism classes of
(possibly disconnected) trivalent ordered graphs with n vertices and m
leaves, such that each connected component has positive Euler char-
acteristic. Similarly define G0(n,m) and G−(n,m) with the indicated
Euler characteristic restrictions on each connected component.
We use the superscripts c and ℓf to further restrict to graphs that

are connected and leaf free, respectively.
Let G+(x, y) denote the following generating function for G+(n,m):

G+(x, y) =
∑

m,n≥0

#G+(n,m)
xn

n!
ym.

Define G0(x, y), G−(x, y), and the connected variants similarly. The
leaf-free variant is obtained from the general formula by evaluating y =
0 and we will think of it as a single variable series instead.

So G+ consists of forests, G0 of disjoint unions of “hairy loops”, and
G− of “everything else”. We will also need to count another kind of
tree.

Definition 5.4. Let Trr(n,m) be the set of isomorphism classes of
ordered trivalent trees T with n trivalent vertices and m + 2 leaves
equipped with an ordered pair of distinct distinguished leaves, called the
roots. Let Trr(x, y) denote the following generating function:

Trr(x, y) =
∑

m,n≥0

#Trr(n,m)
xn

n!
ym.
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Now we will combine these generating functions into a single gener-
ating function in five variables which will keep track of a complicated
weighted count of graphs. The behavior of these series will give us a

key to relate the desired quantity p̂b ∂3kc−(q
2k
3,1) to the simpler expression

∂3k− (q2k3,1) analyzed in Corollary 4.19.

Definition 5.5. The master series Ω(x, y, z, w, u) is the following for-
mal series:

Ω(x, y, z, w, u) =
ezTrr(x,y)

ewG
c
0(x,y)G+(x, y)G

ℓf
−(xu)

.

The following technical lemma providing a kind of evaluation of the
master series constitutes the promised key.

Lemma 5.6. Given a non-negative integer n, construct a one-variable
series Ωev(x) by performing the following R-linear substitution of mono-
mials on Ω:

xn1yn2zn3wn4un5 7→
{
0 n2 odd;

(n2 − 1)!!n3!
( 3

2
n5+3n
n3

)
(3n1 + 6n− 3)n4xn1 n2 even.

Then Ωev is well-defined and equal to 1 for all n.

We will defer the proof of this lemma, which is a somewhat involved
exercise in formal series, to Appendix C, and meanwhile use it to prove
the main theorem.

5.7. Proof of the main theorem. We are now ready to complete
the proof of Theorem 3.10. As per the discussion at the beginning of
the section, it is enough to show

p̂b ◦ ∂3kc−(q2k3,1)|ξ0=6k−4 = ∂3k− (q2k3,1)

for all k. The evaluation at 6k−4 corresponds to the identity κ0 = 2g−2
noted at the beginning of Section 3 and the assignment g = 3k − 1 of
Example 3.7.

Lemma 5.8. Let g = 3k − 1 for k ≥ 1. Then

p̂b ◦ ∂3kc−q2k3,1|ξ0=6k−4 = (3k)!
3k∑

r=0

(2r − 1)!!

∑

χ(Γξ⊔Γ0⊔Γ±)=r−k
φr−χ(Γ±)(3− 6k)#π0(Γ0)(−1)#π0(Γ±)

∏

Γc⊂Γξ

−ξ−χ(Γc),
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where the summation on the second line is over isomorphism classes of
ordered trivalent graphs of Euler characteristic r − k with 2k vertices
and 2r leaves equipped with a decomposition as a disjoint union into

(1) a graph Γξ all of whose connected components have negative
Euler characteristic,

(2) a graph Γ0 all of whose connected components have zero Euler
characteristic, and

(3) a graph Γ± all of whose connected components have nonzero
Euler characteristic

and the product is over connected components of Γξ.

Proof. By Lemma 5.2, we can write ∂3kc−(q
2k
3,1) as a sum over graphs.

Then applying p̂b corresponds, for such a graph Γ, to choosing some
subgraph Γξ consisting of a collection of connected components of Γ
to evaluate via q0,2n 7→ ξn and the complementary subgraph Γ \ Γξ to
evaluate via q0,2n 7→ φn. This needs a little modification because of the
exceptional values when n = −1 and n = 0. That is, when n = −1,
we evaluate φ−1 + ξ−1 to φ−1 and when n = 0 we evaluate φ0 + ξ0 to
6n− 3 as described above. So we should separate out cases according
to the sign of the Euler characteristic of connected components, and
only include connected components with negative Euler characteristic
in Γξ. �

We would like to more or less “hold Γξ fixed” in Lemma 5.8 and show
that the coefficients are individually zero except for the trivial power of
φ, i.e., the case r − χ(Γ±) = 0. But there is a relationship between Γξ
and the summation index r which makes this slightly awkward. To get
around this issue, we will use the decomposition of Appendix A. This
decomposition starts from a conneced trivalent graph Γ of negative
Euler characteristic and outputs a connected leaf-free trivalent graph
of the same Euler characteristic, called the core of Γ, along with a
collection of trivalent doubly rooted trees, the insertion forest.

Lemma 5.9. Let g = 3k + 1 for k ≥ 1. Then

p̂b ◦ ∂3kc−q2k3,1 = (3k)!
∑

Γ′
ξ


 ∏

Γ′
c⊂Γ′

ξ

−ξ−χ(Γc)




3k∑

r=0

(2r − 1)!!

∑

Γ′
−,Γ0,Γ+,Γins⊂Γ

φr−χ(Γ+)−χ(Γ′
−)

(3
2
(#V ′

ξ +#V ′
−)

#π0(Γins)

)
(3− 6k)#π0(Γ0)(−1)#π0(Γ

′
−⊔Γ+)

where
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(1) Γ′
ξ and Γ′

− vary over leaf-free ordered trivalent graphs,
(2) Γ0 varies over ordered trivalent graphs where every component

has Euler characteristic zero,
(3) Γ+ varies over ordered trivalent forests,
(4) Γins varies over ordered trivalent forests where each connected

component is given an ordered pair of distinct roots, such that
the total number of vertices of all five graphs is 2k and the total
number of non-root leaves is 2r, and

(5) all of the orders are subordinate to an order on the disjoint
union Γ of all of the five graphs.

Proof. Beginning with the situation of Lemma 5.8, we can further de-
compose Γ± into Γ− (its components with negative Euler characteristic)
and Γ+ (its components with positive Euler characteristic), and per-
form the reduction procedure of the appendix on Γc and Γ−. Then we
have cores Γ′

ξ of Γξ and Γ′
− of Γ−) and insertion forests for them. If we

like, we can think of a single insertion forest Γins for the disjoint union
Γ′
ξ ⊔ Γ′

−. Then the number of graphs with insertion forest Γins and

core Γ′ is
(

E(Γ′)
#π0(Γins)

)
. Since the core is leaf-free and trivalent, we have

3V = 2E, so we can write the edge count as 3
2
the vertex count. �

Now given the equation of Lemma 5.9, write n1 for the total number
of vertices of Γ′

− ⊔ Γ0 ⊔ Γ+ ⊔ Γins and write 2n for the total number of
vertices of Γ′

ξ. Note that χ(Γ+)+χ(Γ
′
−) = n1−r. Another simplification

comes from noticing that r ≤ 3k is not a necessary constraint to specify
because it follows automatically from graph combinatorics, which can
be seen as follows. Leaf-free graphs, connected trivalent graphs of Euler
characteristic zero, and doubly rooted trees all have at least as many
vertices as non-root leaves. On the other hand, a tree has 2 more leaves
than vertices. Then for a fixed k, the maximum number of non-root
leaves that can occur with a set of graphs (Γ′

ξ,Γ
′
−,Γ0,Γ+,Γins) as above

is when Γins has 2k connected components, each a single vertex. In this
case there are 6k = 2(3k) leaves so r > 3k is not possible.
Then we can separate out a factor of (3k)!

(
2k
2n

)∑∏−ξ−χ(Γc) where
the binomial coefficient comes from choosing the which 2n vertices of
the 2k lie in Γ′

ξ. The coefficient of this term is then:

∞∑

r=0

(2r− 1)!!
∑

Γ′
−,Γ0,Γ+,Γins

(
n1

#V ′
−,#V0,#V+,#Vins

)
φn1

(
3n+ 3

2
#V ′

−
#π0(Γins)

)
·

(3− 3(n1 + 2n))#π0(Γ0)(−1)#π0(Γ
′
−⊔Γ+).
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Now the sum is being taken over tuples of ordered trivalent graphs
(Γ′

−,Γ0,Γ+,Γins) with Euler characteristic restrictions and extra root
data for Γins but without any ambient graph Γ. This sum in turn is
obtained from the formal series in x, y, z, w, and u

(5.10)
∑

Γ′
−,Γ0,Γ+,Γins

n1!(−1)#π0(Γ
′
−⊔Γ0⊔Γ+)

#V ′
−!#V0!#V+!#Vins!

xn1y2rz#π0(Γins)w#π0(Γ0)u#V
′
−

by linearly replacing xn1yn2zn3wn4un5 as in Lemma 5.6 and evaluating
at x = φ.

Lemma 5.11. The coefficients of xn1yn2zn3wn4un5 in (5.10) and in the
master series Ω(x, y, z, w, u) of Definition 5.5 agree up to a nonzero
scalar multiple depending only on n1 which is 1 for n1 = 0.

Proof. Rescale the coefficients of (5.10) by dividing by n1!. Then we
can decompose the rescaled series, using the fact that Γ′

− has no leaves,
Γ0 and Γins have as many non-root leaves as vertices, and Γ+ has two
leaves more than its number of vertices:

∑

Γ′
−,Γ0,Γ+,Γins

(−1)#π0(Γ
′
−⊔Γ0⊔Γ+)

#V ′
−!#V0!#V+!#Vins!

xn1y2rz#π0(Γins)w#π0(Γ0)u#V
′
−

=
∑

Γ′
−

(−1)#π0(Γ
′
−)

#V ′
−!

(xu)#V
′
−

∑

Γ0

(−w)#π0(Γ0)

#V0!
(xy)#V0

∑

Γ+

(−y2)#π0(Γ+)

#V+!
(xy)#V+

∑

Γins

z#Vins

#Vins!
(xy)#Vins.

These are all exponential generating functions for the appropriate types
of ordered trivalent graphs, so this product is

exp(−Gℓf,c
− (xu)) exp(−wGc

0(x, y)) exp(−Gc
+(x, y)) exp(zTrr(x, y)),

which is the master series. �

Proof of Theorem 3.10. By Lemma 5.6, for any n the coefficient of xn1

in Ωev(x) is 1 if n1 = 0 and 0 otherwise. Then by Lemma 5.11,
the same is true for the “evaluation” à la Lemma 5.6 of the expres-
sion (5.10). This implies that for each choice of Γ′

ξ, the coefficient in

p̂b ◦ ∂3kc−q2k3,1|ξ0=6k−4 of the corresponding expression in ξj variables has
no dependence on φ.

But how does the φ0 term of the expression p̂b◦∂3kc−q2k3,1|ξ0=6k−4 differ

from ∂3k− q
2k
3,1? The operator ∂c− differs from ∂− by terms with a coeffi-

cient of φ. On the other hand, the operator p̂b differs from the identity
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by terms with positive powers of φ and special terms with power φ0 for
q0,0 and φ−1 for q0,−2. But to arrive at q0,0 we must have a surface of
genus 1, implying at least one cap, and to arrive at q0,−2 we must have
a surface of genus 0, implying at least three caps. Since caps only arise
(in pairs) from the application of ∂ψ and ∂′ψ, this means that for terms

containing qi0,0q
j
0,−2 there must have been at least 3j+i

2
such operators,

yielding a total power of φ of at least 3j+i
2

− j. This is greater than
zero unless i = j = 0. But in the i = j = 0 case we are looking at
summands where we have applied only ∂− and then avoided the two

special cases of p̂b. Then the coefficient of φ0 in p̂b ◦ ∂3kc−q2k3,1|ξ0=6k−4 is

exactly ∂3k− q
2k
3,1. �

6. Final remarks

The following conjecture was proposed by Yin:

Conjecture 6.1. Every relation in the tautological ring of Cg comes from
a relation on the universal Jacobian Jg.
Yin further conjectured that the sl2 action is the only source of all

tautological relations. For more details and precise statements we refer
to [19, Conjecture 3.19]. In a similar way one can use relations on the
universal Jacobian and produce relations on all powers of the universal
curve. Conjecturally these relations are enough. In [17] it is proved
that all tautological relations on Cn2 can be obtained from the universal
Jacobian. From the results in [11] the same is true for the moduli
spaces Cng for g = 3, 4 and n ∈ N as well as Cn5 when n ≤ 7. By the
results in [10, 18] this procedure leads to a conjectural description of
the space of relations on the moduli space Mrt

g,n of stable n-pointed
curves of genus g with rational tails. The analogous version of Faber–
Zagier relations on the moduli space Mg,n are introduced by Pixton
[12]. These relations are conjectured to be all tautological relations.
There is a natural way to restrict these relations on the space Mrt

g,n

and push them forward to Cng via the morphism Mrt
g,n → Cng which

contracts all rational components. It is a reasonable hope that the
method studied in this article can be used to prove more Faber–Pixton–
Zagier relations on Cng from the universal Jacobian. This would give a
partial positive answer to [18, Conjecture 3.24].

Appendix A. Trivalent graphs and cores

In this appendix, we describe a structure theorem for trivalent graphs
(i.e., all vertices are of valence 1 or 3—but the graph may have leaves)
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which realize such graphs as being built by inserting a collection of
trees into a closed trivalent core graph.

A.1. Conventions on graphs. We consider a graph Γ as being a
tuple (V,H, τ, ι) where V is the set of vertices, H is the set of half-
edges, τ : H → V is the target map, and ι : H → H is an involution.
An edge is a non-fixed orbit of ι, and the set of edges is denoted E
or E(Γ). A leaf is a fixed orbit of ι. A graph is leaf-free if it has
no leaves. If h is a half-edge then τ(h) is the vertex of h. If v is a
vertex then τ−1(v) is the set of half-edges of v. The valence of v is
the cardinality |τ−1(v)|; in particular trivalent means valence 3. The
geometric realization |Γ| of a graph Γ is the topological space

(([0, 1]×H) ⊔ V )/ {(0, h) ∼ τ(h), (t, h) ∼ (1− t, ι(h))} .
A connected component of a graph Γ is a subgraph whose geometric
realization is a connected component of |Γ|. A graph is a tree if its
geometric realization is simply connected and a forest if its connected
components are trees. The Euler characteristic of Γ is χ(Γ) = |V |−|E|.

Lemma A.2. The Euler characteristic of a trivalent graph is |L|−|V |
2

where L is the set of leaves.

Proof. We know 3|V | = |H| and |H| = 2|E|+ |L| so |E| = 3|V |−|L|
2

. �

An ordered graph is a graph equipped with an order on its vertices
and an order on the half-edges of each vertex.

Remark A.3. Graphs, and even ordered graphs, can have automor-
phisms, but a leaf-free ordered graph has only the identity automor-
phism.

A.4. The core of a trivalent graph.

Definition A.5. Let Γ be a trivalent graph. A half-edge h of Γ is
superfluous if either

(1) the half-edge h is a leaf or
(2) the half-edge h “points toward a tree” in the sense that there is

a simply connected component of Γ \ {h, ι(h)} which does not
contain τ(h) but is in the same connected component as τ(h) in
the larger ambient graph Γ.

A vertex is superfluous if it has a superfluous half-edge and is otherwise
core.

Definition A.6. Let Γ be a (possibly ordered) trivalent graph. The
core of Γ is the graph Γ′ = (V ′, H ′, τ ′, ι′) (ordered if Γ is) whose
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(1) vertices are the core vertices of Γ,
(2) half-edges are the half-edges of the core vertices,
(3) whose target map τ ′ is induced,
(4) whose half-edge bijection ι′ is induced by the bijection ι of Γ in

the sense explained below, and
(5) whose orders on vertices and half-edges are induced by those of

Γ.

For h a half-edge of a core vertex v0, construct a sequence

(h = h0, h1, . . . , hn = ι′(h))

of half-edges recursively as follows. Suppose (h0, . . . , h2k) is constructed.
Let h2k+1 = ι(h2k).
If τ(h2k+1) is a core vertex, then n = 2k + 1 and we are done.
Otherwise, τ(h2k+1) is superfluous and thus has at least one super-

fluous half-edge. The half-edge h2k+1 cannot be superfluous because
then v0 would be superfluous (it would imply v0 is a vertex of a sub-
tree in Γ \ {h2k, h2k+1}, which in turn would imply that both half-edges
of v0 other than h0 were superfluous). On the other hand, if both the
remaining half-edges of τ(h2k+1) were superfluous, then h2k would be
superfluous as well. Then since τ(h2k+1) is superfluous, h2k+1 is not
superfluous, and at least one of the other two half-edges of τ(h2k+1)
is not superflous, we conclude that τ(h2k+1) has precisely one super-
fluous half-edge. Let h2k+2 be the (necessarily unique) non-superfluous
half-edge of v different from h2k+1.

Lemma A.7. The core is a well-defined leaf-free trivalent graph.

Proof. The procedure to generate hn cannot repeat a half-edge and
so terminates. If (h0, . . . , hn) is the involution sequence for h0 then
(hn, . . . , h0) is the sequence for hn, so ι

′ is an involution. Because of
this reflection property, for hn to equal h0 would either require some
hk to be a leaf or h2k+2 = h2k+1 for some index, both of which are false
by construction. Therefore ι′ is fixed-point free. �

Lemma A.8. Let Γ be a connected trivalent graph with Euler char-
acteristic χ. Then the core of Γ is empty if χ ≥ 0 and has Euler
characteristic χ otherwise. A graph with m leaves such that every con-
nected component has non-positive Euler characteristic must have m
superfluous vertices.

Proof. If Γ is a tree then every vertex is trivially superfluous. If Γ has
Euler characteristic 0 then there is a single cycle in |Γ| and so every
vertex must have a half-edge pointing “away” from the cycle. So every
vertex is superfluous.
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Figure 2. A graph Γ, the same graph Γ with superflu-
ous vertices and half-edges in thinner gray, the core of Γ,
and the insertion forest of Γ.

The realization of any trivalent graph of negative Euler characteris-
tic contains either an embedded “theta” or an embedded “handcuff”.
In either case the trivalent vertices of these subspaces must be core.
Therefore a graph with negative Euler characteristic contains a core
vertex.
Now divide the superfluous vertices into two types, according to

whether the vertex has half-edges appearing in a sequence to generate
the involution ι′ or not. If v is of the first type, then it has precisely
two half-edges h1 and h2 in such a sequence. The third half-edge h3 is
necessarily superfluous, and as a result is attached to a tree (whose ver-
tices are necessarily of the second type). Since there are core vertices,
this must exhaust all superfluous vertices by connectedness.
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Then in this case, the subgraph spanned by superfluous vertices is a
forest subgraph of Γ, and the procedure to generate the core replaces
each tree in the union with a “half-edge gluing”. Removing a subtree
from a graph increases the Euler characteristic by one. Identifying two
leaves into an edge decreases the Euler characteristic by one. Therefore
these two operations together preserve the Euler characteristic. �

Definition A.9. Let v be a superfluous vertex of a trivalent graph Γ
which is in a connected component with nonempty core. The insertion
forest of v is a graph built as follows. The vertices are of the superflu-
ous vertices of Γ. The half-edges are the half-edges of the superfluous
vertices of Γ. The target map is induced. For the involution ιif , let h
be a half-edge of the insertion forest. If ι(h) is also in the insertion
forest, then ιif (h) = ι(h). Otherwise we declare that ιif (h) = h, i.e.,
that h is a leaf of the insertion forest. We call a connected component
of the insertion forest an insertion tree.

Lemma A.10. Let T be an insertion tree of a trivalent graph Γ. Then
T has precisely two leaves which are not leaves of Γ.

Proof. These are the leaves that are paired under ι with half-edges in
the core. If there were none this would violate connectedness. If there
were only one, h, then ι(h) would be superfluous so τ(ι(h)) would
be superfluous, a contradiction. If there were more than two, then
superfluity would fail for some vertex of T . �

Appendix B. Generating functions

This appendix is concerned with calculating generating functions for
classes of graphs involved in the master series Ω and the key lemma 5.6.
We use P(n) to denote the set of unordered partitions of the finite

set {1, . . . , n}. That is, an element of P(n) is a set p of pairwise
disjoint nonempty subsets (called blocks) {bi} of {1, . . . , n} whose union
is {1, . . . , n}.
We start with a counting lemma and a standard combinatorial tech-

nique that we will use repeatedly.

Lemma B.1. The number of isomorphism classes of rooted ordered
trivalent trees with n vertices (for n ≥ 1) is

(2n)!

(n+ 1)!
3n.

Proof. It is a standard combinatorial identity that the number of planar
binary trees with n vertices is 1

n+1

(
2n
n

)
for n ≥ 1. Since half-edges at

each vertex are ordered, we have a choice of which half-edge points
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toward the root in each of the n vertices, which yields a factor of 3n.
The planar structure of the tree induces an order on the other two
half-edges of each vertex, and so specifying that this order and the
given order must be compatible with respect to some convention uses
the planarity to keep track of the distinction between the other two
half-edges. The vertices must be ordered which gives another factor of
n! and multiplying all of these together yields the result. �

Sometimes it is useful to include a “trivial tree” for the case n = 0
and sometimes it is not. Our default will follow our conventions and we
will specify explicitly if we want to include a trivial tree in this count.
The following “compositional formula” will be useful several times.

Theorem B.2 (Compositional formula [16, 5.1.4]). Given two expo-
nential generating functions

F (z) =

∞∑

n=1

fn
n!
zn

G(z) = 1 +

∞∑

n=1

gn
n!
zn,

then the exponential generating function for the sequence

h0 = 1

hn =
∑

p∈P(n)

g|p|
∏

bi∈p
f|bi|

is (G ◦ F )(z).

One well-known special case of this theorem occurs when gn = 1 for
all n.

Corollary B.3 (Exponential compositional formula). Let F (z) be the
exponential generating function for fn for n ≥ 1 as above. Then eF (z)

is the exponential generating function for

h0 = 1

hn =
∑

p∈P(n)

∏

bi∈p
f|bi|.

We will use this formulation to count possibly disconnected graphs
of some sort in terms of a count of connected graphs of the same sort.
Now we proceed to the various counting of the graphs involved.
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Leaf-free, negative Euler characteristic. In this section, we prove
the following count.

Lemma B.4. The exponential generating function Glf
− (x) for isomor-

phism classes of ordered leaf-free trivalent graphs with n vertices such
that each connected component has negative Euler characteristic is

(B.5) Glf
− (x) =

∞∑

n=0

(6n− 1)!!

(2n)!
x2n.

Proof. By Lemma A.2, asking for negative Euler characteristic is no
condition on the graph, so this is counting perfect pairings of 3n half-
edges. There are no perfect pairings if n is odd and (3n−1)!! if n is even.
The denominator comes from making this an exponential generating
function. �

Two-rooted trees. In this section, we prove the following count.

Lemma B.6. The two variable generating function Trr(x, y) in Def-
inition 5.4 for isomorphism classes of ordered trivalent trees with n
vertices, two distinct distinguishable leaves called roots, and m non-
root leaves is

(B.7) Trr(x, y) =
1√

1− 12xy
− 1.

Proof. We use Lemma B.1. A tree with n vertices has n + 2 leaves
including the first root. Choosing a second root amounts to n + 1
choices. Then the number of vertices is the same as the number of
non-root leaves. We want an exponential generating function, which
introduces a factor of 1

n!
. We arrive at the following series, as promised:

∞∑

n=1

(n + 1)

n!

(2n)!

(n + 1)!
(3xy)n =

∞∑

n=1

(
2n

n

)
(3xy)n. �

Zero Euler characteristic. Next, we prove the following count.

Lemma B.8. The generating function G0(x, y) for the isomorphism
classes of ordered trivalent graphs with n and m leaves such that each
connected component has Euler characteristic zero is

(B.9) G0(x, y) = (1− 12xy)−
1
4

Remark B.10. Having zero Euler characteristic means that the number
of edges, 1

2
(3n−m), must be equal to the number of vertices, n, which

implies that the two indices n and m must be equal for the number
to be non-zero. Then G0(x, y) can be written in terms of the single
variable z = xy as an exponential generating function.
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Proof. By Corollary B.3, it suffices to show that

Gc
0(z) = −1

4
log(1− 12z),

where Gc
0(z) is the exponential generating function for connected or-

dered trivalent graphs with n vertices and zero Euler characteristic.
A graph of Euler characteristic zero has a unique cycle, so we can

decompose the count of such graphs by the length of this cycle. Then
each vertex in the cycle is part of a unique maximal subtree containing
no other vertex of the cycle, and this exhausts the vertices of the graph.
This implies that the count of such graphs with n vertices is

(B.11)
∑

p∈P(n)

(∏

bi∈p
#(TY (|bi|))

)
|p− 1|!

2
,

where TY (n) counts ordered trivalent trees with n vertices including a
special vertex and an ordered pair of two distinct leaves of the special
vertex. This is the vertex in the unique cycle and the labeling corre-
sponds to deciding “which half-edge goes which way” in that unique

cycle. The |p−1|!
2

corresponds to the dihedral symmetry involved in
assembling these trees.
We will use Theorem B.2. To use the formula directly requires one

of the exponential generating functions to have constant term 1 so
we will artificially modify the series (B.11) by putting a dummy 1 in
when n = 0, instead of a 0. Then Gc

0(z) + 1 is the composition of the
exponential generating function

1 +
∞∑

n=0

(n− 1)!

2n!
zn = 1− 1

2
log(1− z)

with the exponential generating function

TY (z) =
∑

#TY (n)
zn

n!

for TY . Therefore to conclude we should compute TY (z).
Counting TY (n) is the same as choosing a vertex and the ordered pair

of half-edges—this is a factor of 6n—and then assembling the rest of the
n−1 vertices into a rooted ordered tree (including the possibility of the

trivial tree if n = 1). Then by Lemma B.1, there are (2n−2)!
n!

3n−1 such
trees (here this is valid for n ≥ 1), and combining with the 6n we get
the exponential generating function which has exponential generating
function

TY (z) = 2
∞∑

n=1

(2n− 2)!

(n− 1)!n!
(3z)n.
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Taking the derivative of this formal series yields 6√
1−12z

, so the expo-

nential generating function is −
√
1− 12z+ c for a constant of integra-

tion c which is 1 because there is no constant term in the exponential
generating function TY (z).
Then the composition formula of Theorem B.2 yields

Gc
0(z) + 1 = 1− 1

2
log(1− (1−

√
1− 12z)) = 1− 1

2
log(

√
1− 12z)

as desired. �

Positive Euler characteristic. In this section, we prove the follow-
ing count.

Lemma B.12. The two variable generating function Gc
+(x, y) for iso-

morphism classes of ordered trivalent trees with n vertices is

(B.13) Gc
+(x, y) =

(1−√
1− 12xy)3(1 + 3

√
1− 12xy)

864x2
.

Proof. Again we use Lemma B.1. Since ordered trees have only the
identity automorphism, this means that we can count the unrooted
ordered trivalent trees by dividing by the n+2 possible choices of root,
so that

Gc
+(x, y) = y2

∞∑

n=1

(2n)!

(n+ 2)!
(3xy)n.

It is standard that

∞∑

n=0

(2n)!

n!
(3z)n =

1√
1− 12z

and this is 1 less than the second derivative of x2Gc
+(x, y) viewed as a

series in the single variable z = xy. Integrating twice with respect to
z, we find that

x2Gc
+(x, y) =

(1− 12xy)
3
2

108
− (xy)2

2
+
xy

6
− 1

108
,

where the constants of integration have been chosen to give the correct
overall values (i.e., zero) for (xy)0 and (xy)1 on the right side. Rewriting
in terms of

√
1− 12xy (which will be more convenient later) yields the

result. �
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Appendix C. Proof of the key lemma

In this section we prove Lemma 5.6, which is about a certain “eval-
uation” of the master series Ω.
For this purpose, we will use the calculations of the constituent gen-

erating functions of the master series Ω from Appendix B (i.e., Lem-
mas B.4, B.6, B.8, and B.12). These computations in hand, we perform
the evaluation of Lemma 5.6 variable by variable, starting with z and
u.

Notation C.1. We will use
√
1− 12xy often, so we use Q as shorthand

for it.

Lemma C.2. For any n ≥ 0, the “evaluation” of the series in x, y, z,
and u

ezTr,r(x,y)

Gℓf
−(xu)

obtained by linearly replacing zn3un5 with n3!
( 3

2
n5+3n
n3

)
is the following

series in x and y:

Q−3n

Gℓf
−(xQ

− 3
2 )
.

Proof. First, by Lemma B.6,

ezTr,r(x,y) =

∞∑

j=0

zj

j!

(
1

Q
− 1

)j

so substituting j!
( 3

2
n5+3n
j

)
for un5zj yields

∞∑

j=0

(
3
2
n5 + 3n

j

)(
1

Q
− 1

)j
=

(
1

Q

) 3
2
n5+3n

. �

Next we turn to w, which is easy.

Lemma C.3. The evaluation of the series 1

ewGc
0(x,y)

in w, x, and y at

w = 3v + 6n− 3 is Q
3v−3

2
+3n.

Proof. By Lemma B.8, G0(x, y) = Q− 1
2 , so

e−w log(G0(x,y)) = G0(x, y)
−w = Q

w
2 . �

We can combine these to achieve the following:
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Corollary C.4. Define a series in Ω′
ev in x by starting from the fol-

lowing series in x, y and v

Q
3v−3

2

G+(x, y)

and performing the following linear substitution:

xn1yn2vn3 7→
{
0 n2 odd,

(n2 − 1)!!xn1(n1)
n3 n2 even.

Then the simplified master series Ωev of Lemma 5.6 is related to Ω′
ev

via

Ωev(x) =
Ω′

ev(x)

Gℓf
−(x)

.

Proof. By Lemmas C.2 and C.3, the simplified master series Ωev is
obtained from

Q
3v−3

2

G+(x, y)G
ℓf
−(xQ

− 3
2 )

by performing the indicated substitution. In order to compare terms,
write

1

Gℓf
−(x)

=
∑

n

γnx
n.

Then the quotient can be written

∑

n

γn
Q

3(v−n)−3
2

G+(x, y)
xn.

If we write v′ = v − n, then we are replacing v′ in the xn1+n term of
the series expansion of the expression

γn
Q

3v′−3
2

G+(x, y)
xn

with n1 (and also doing a substitution for y). That’s the same as
replacing v in the xn1 term of the series expansion of the expression

γn
Q

3v−3
2

G+(x, y)

with n1, doing the substitution for y, and then multiplying by xn at
the end. Then the γn and xn terms have become decoupled and the

overall effect is to do the substitution on the simpler quotient Q
3v−3

2

G+(x,y)

and then divide by Gℓf
−(x). �
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Now the key lemma can be derived from the following technical re-
sult.

Lemma C.5. The coefficient of (xy)2n in the expansion of

Q
6n−3

2 (1 +Q)2n+1(2Q+ 1)−
2n+1

2

is
(6n)!n!

(3n)!(2n)!(2n)!

2√
3

(
1

3

)n
.

Assuming this lemma, we finish the main proof.

Proof of Lemma 5.6. By Corollary C.4, it suffices to perform the sub-
stitution of that corollary on the series expansion of the expression

Q
3v−3

2

G+(x, y)

and verify that the result is equal to Gℓf
−(x). Lemma B.12 says

G+(x, y) = exp

(
(1−Q)3(1 + 3Q)

864x2

)
.

So the parity of x and y in the series in question will always be the
same. Then after substituting for y, there will be no odd powers of x,
so we may confine ourselves to the even powers. In fact, the power of y
and the power of x differ only in terms of the x2 in the denominator of
Gc

+(x, y) so if we are interested in the 2n1 power of x in the substitution,
it is the x2n1 term of the series

Q
( 6n1−3

2 )
x

∞∑

n=0

1

n!
(2n1 + 2n− 1)!!

(
−(1−Qx)(1 + 3Qx)

864x2

)n
,

where Qx =
√
1− 12x. But

∞∑

n=0

(2n1 + 2n− 1)!!

n!
xn =

(2n1 − 1)!!

(1− 2x)
2n1+1

2

so the series of interest is

Q
( 6n1−3

2 )
x

(2n1 − 1)!!
(
1 + (1−Qx)(1+3Qx)

432x2

) 2n1+1

2

.

By direct manipulation we have the equation

1 +
(1−Qx)

3(1 + 3Qx)

432x2
=

4

3

(1 + 2Qx)

(1 +Qx)2
.
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Then finally we are interested in the x2n1 coefficient of

(2n1 − 1)!!

(
3

4

) 2n1+1
2 Q

6n1−3
2

x (1 +Qx)
2n1+1

(1 + 2Qx)
2n1+1

2

.

By Lemma C.5, this coefficient is

(2n1 − 1)!!

(
3

4

) 2n1+1
2 (6n1)!n1!

(3n1)!(2n1)!(2n1)!

2√
3

(
1

3

)n1

=
(6n1 − 1)!!

(2n1)!
,

which is by Lemma B.4 the x2n1 coefficient of Gℓf
−(x), as desired. �

It only remains to prove Lemma C.5.

Proof of Lemma C.5. Let us begin with an overview. The proof will
use a method of Hautus and Klarner [3] for extracting the “diagonal”
of an analytic series in two variables. One expositional option would
be to build such a two-variable series whose diagonal was precisely the
generating function of the numbers we care about. We have chosen
instead to build a series whose even diagonal entries are the numbers
we care about and whose odd entries are irrelevant for our purposes.
This allows us a little more flexibility in the shape of the series we build
and we can apply a special case of Hautus and Klarner. The price we
pay for this is that after finishing the computation we have an extra
step to extract the even degree coefficients.
Let us begin. It is convenient to write our series in terms of U =

(1 − 12x)−
1
2 (i.e., the reciprocal of Qx). Consider the following series

in x and t:

F (x, t) =
∞∑

n=0

1

U

3n−3
2
(
1 +

1

U

)n+1(
2

U
+ 1

)−n+1
2

tn

= U(U + 1)(U + 2)−
1
2

∞∑

n=0

(
U + 1

U2
√
U + 2

t

)n

Note that the even “diagonal coefficients”, i.e., the coefficients of x2nt2n

in this series, are indeed the quantities of interest to us.
The auxiliary functions

W (x) =
U(U + 1)√
U + 2

,

Y (x) =
U + 1

U2
√
U + 2

=
W (x)

U3

are themselves analytic in a neighborhood of x = 0. Then the special
case of the result of Hautus and Klarner [3, Section 4] allows us to
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extract the one variable diagonal series associated to F (x, t). That is,
if

F (x, t) =
∞∑

m=0

∞∑

n=0

αm,nx
mtn,

then we can extract

F∆(z) =

∞∑

n=0

αn,nz
n

(the variable z here is unrelated to the variable z used in the master se-
ries and other similar series earlier). The recipe of Hautus and Klarner
says that F∆(z) is given via a residue computation which simplifies in
the case of interest to be

F∆(z) =
W (x)

1− zY ′(x)

∣∣∣∣∣
z= x

Y (x)

,

where x is defined implicitly by zY (x) = x as an analytic function of
z in a neighborhood of the origin. It’s convenient for us to rewrite this

F∆(z) =
W (x)/Y (x)

dz
dx

∣∣∣∣∣
z= x

Y (x)

.

Now using x = U2−1
12U2 , we see that the equality zY (x) = x occurs at

(C.6) 12z =
U2 − 1

U2

U2
√
U + 2

U + 1
= (U − 1)

√
U + 2.

and so in our case, we can use the facts that W (x) = U3Y (x) and that
dU
dx

= 6U3 along with the chain rule to get

F∆(z) =
U3

dz
dU

· 6U3

∣∣∣∣∣
z= x

Y (x)

=
1

6 dz
dU

∣∣∣∣∣
z= x

Y (x)

,

which is the formal value of U ′(z)/6 where U and z are related by
Equation (C.6). Now by trigonometric identities or by solving a cubic,
we find that near (z = 0, U = 1) we can give an explicit form for the
inverse function:

U(z) = 2 cos

(
2

3
cos−1(6z)

)
,

where we take the standard branch of the arccosine.
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It is a tedious but elementary verification that both U ′(z)/6 and the
convergent series

∞∑

n=0

(6n)!n!

(3n)!(2n)!(2n)!

(z
3

)2n

are solutions to the second order linear differential equation

20y + 108zy′ + (36z2 − 1)y′′ = 0.

Because the coefficients of y and y′′ are even functions of z and the
coefficient of y′ is an odd function, U ′(−z)/6 is also a solution, so the
average 1

12
(U ′(z)+U ′(−z)) and the given series are both solutions with

vanishing first derivative at 0. Then they agree up to a scalar multiple,
which can be checked by hand to be 2√

3
. �
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10. D. Petersen, Poincaré duality of wonderful compactifications and tautological

rings, Int. Math. Res. Not. IMRN (2016), no. 17, 5187–5201. MR 3556436
11. D. Petersen, M. Tavakol, and Q. Yin, Tautological classes with twisted coeffi-

cients, arXiv preprint arXiv:1705.08875 (2017).
12. A. Pixton, Conjectural relations in the tautological ring of Mg,n, arXiv preprint

arXiv:1207.1918 (2012).
13. A. Polishchuk, Universal algebraic equivalences between tautological cycles on

Jacobians of curves, Mathematische Zeitschrift 251 (2005), no. 4, 875–897.
14. , Lie symmetries of the Chow group of a Jacobian and the tautological

subring, Journal of Algebraic Geometry 16 (2007), no. 3, 459–476.



THE POLISHCHUK DIFFERENTIAL OPERATOR VIA SURFACES 37

15. , Algebraic cycles on the relative symmetric powers and on the relative

Jacobian of a family of curves. I, Selecta Mathematica 13 (2008), no. 3, 531–
569.

16. R. Stanley, Enumerative combinatorics. vol. 2, volume 62 of Cambridge Studies

in Advanced Mathematics, 1999.
17. M. Tavakol, The moduli space of curves and its invariants, Proceedings of 5th

Frontiers in Mathematical Sciences, IPM Tehran, to appear.
18. , The connection between R∗(Cn

g ) and R∗(M rt
g,n), Journal of Pure and

Applied Algebra 222 (2018), no. 6, 1306–1315.
19. Q. Yin, Tautological cycles on curves and Jacobians, Ph.D. thesis, Radboud

Universiteit Nijmegen, 2013.

Center for Geometry and Physics, Institute for Basic Science, Po-

hang, Republic of Korea 37673

E-mail address : gabriel@ibs.re.kr

School of mathematics and statistics, University of Melbourne,

VIC 3010, Australia

E-mail address : mehdi.tavakol@unimelb.edu.au


	1. Introduction
	2. Tautological classes on the universal Jacobian
	2.9. Lefschetz decomposition of Chow groups

	3. Faber–Zagier relations
	3.3. Relations on moduli of curves from the universal Jacobian

	4. Lifting of the Polishchuk differential operator using punctured surfaces
	5. The cancellation of contributions from psi-classes
	5.1. Enumerative combinatorics for surface gluing
	5.7. Proof of the main theorem

	6. Final remarks
	Appendix A. Trivalent graphs and cores
	A.1. Conventions on graphs
	A.4. The core of a trivalent graph

	Appendix B. Generating functions
	Leaf-free, negative Euler characteristic
	Two-rooted trees
	Zero Euler characteristic
	Positive Euler characteristic

	Appendix C. Proof of the key lemma
	References

