13 research outputs found
Can a Satellite-Derived Estimate of the Fraction of PAR Absorbed by Chlorophyll (FAPAR(sub chl)) Improve Predictions of Light-Use Efficiency and Ecosystem Photosynthesis for a Boreal Aspen Forest?
Gross primary production (GPP) is a key terrestrial ecophysiological process that links atmospheric composition and vegetation processes. Study of GPP is important to global carbon cycles and global warming. One of the most important of these processes, plant photosynthesis, requires solar radiation in the 0.4-0.7 micron range (also known as photosynthetically active radiation or PAR), water, carbon dioxide (CO2), and nutrients. A vegetation canopy is composed primarily of photosynthetically active vegetation (PAV) and non-photosynthetic vegetation (NPV; e.g., senescent foliage, branches and stems). A green leaf is composed of chlorophyll and various proportions of nonphotosynthetic components (e.g., other pigments in the leaf, primary/secondary/tertiary veins, and cell walls). The fraction of PAR absorbed by whole vegetation canopy (FAPAR(sub canopy)) has been widely used in satellite-based Production Efficiency Models to estimate GPP (as a product of FAPAR(sub canopy)x PAR x LUE(sub canopy), where LUE(sub canopy) is light use efficiency at canopy level). However, only the PAR absorbed by chlorophyll (a product of FAPAR(sub chl) x PAR) is used for photosynthesis. Therefore, remote sensing driven biogeochemical models that use FAPAR(sub chl) in estimating GPP (as a product of FAPAR(sub chl x PAR x LUE(sub chl) are more likely to be consistent with plant photosynthesis processes
Estimation of Light-use Efficiency of Terrestrial Ecosystem from Space: A Status Report
A critical variable in the estimation of gross primary production of terrestrial ecosystems is light-use efficiency (LUE), a value that represents the actual efficiency of a plant's use of absorbed radiation energy to produce biomass. Light-use efficiency is driven by the most limiting of a number of environmental stress factors that reduce plants' photosynthetic capacity; these include short-term stressors, such as photoinhibition, as well as longer-term stressors, such as soil water and temperature. Modeling LUE from remote sensing is governed largely by the biochemical composition of plant foliage, with the past decade seeing important theoretical and modeling advances for understanding the role of these stresses on LUE. In this article we provide a summary of the tower-, aircraft-, and satellite-based research undertaken to date, and discuss the broader scalability of these methods, concluding with recommendations for ongoing research possibilities
Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs
Life-threatening `breakthrough' cases of critical COVID-19 are attributed to poor or waning antibody response to the SARS- CoV-2 vaccine in individuals already at risk. Pre-existing autoantibodies (auto-Abs) neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals; however, their contribution to hypoxemic breakthrough cases in vaccinated people remains unknown. Here, we studied a cohort of 48 individuals ( age 20-86 years) who received 2 doses of an mRNA vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Antibody levels to the vaccine, neutralization of the virus, and auto- Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal antibody response to the vaccine. Among them, ten (24%) had auto-Abs neutralizing type I IFNs (aged 43-86 years). Eight of these ten patients had auto-Abs neutralizing both IFN-a2 and IFN-., while two neutralized IFN-omega only. No patient neutralized IFN-ss. Seven neutralized 10 ng/mL of type I IFNs, and three 100 pg/mL only. Seven patients neutralized SARS-CoV-2 D614G and the Delta variant (B.1.617.2) efficiently, while one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only 100 pg/mL of type I IFNs neutralized both D61G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating antibodies capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a significant proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population
Multi-angle remote sensing of forest light use efficiency by observing PRI variation with canopy shadow fraction
We show that observed co-variations at sub-hourly time scales between the photochemical reflectance index (PRI) and canopy light use efficiency (LUE) over a Douglas-fir forest result directly from sub-hourly leaf reflectance changes in a 531 nm spectral window roughly 50 nm wide. We conclude then, that over a forest stand we are observing the direct effects of photosynthetic down-regulation on leaf-level reflectance at 531 nm. Key to our conclusion is our ability to simultaneously measure the LUE and reflectance of the Douglas-fir stand as a function of shadow fraction from the “hot spot” to the dark spot and a new finding herein, based on radiative transfer theory, that the magnitude of a normalized reflectance difference index (NDRI) such as PRI can vary with shadow fraction only in case the reflectance of the shaded and sunlit leaves differ in at least one of the NDRI bands. Our spectrometer measurements over a nearly 6 month period show that at a forest stand scale, only two NDRIs (both containing a band near 570 nm) vary with shadow fraction and are correlated with LUE; an NDRI with a band centered at 531 nm roughly 50 nm wide, and another near 705 nm. Therefore, we are able to conclude that only these two bands\u27 reflectance differ between the sunlit and the shaded elements of the canopy. Their reflectance changes on time scales of a few minutes or less. Our observations also show that the reflectance changes at 531 nm are more highly correlated with variations in canopy light use efficiency when only sunlit canopy elements are viewed (the hot spot), than when only shaded elements (the dark spot) are viewed. Taken together then, these results demonstrate that the observed sub-hourly changes in foliage reflectance at 531 nm and 705 nm can only result from corresponding variations in photosynthetic rates. The importance of our results are as follows: (1)We show that variations in PRI with LUE are a direct result of rapid changes in foliage reflectance at 531 nm resulting from photosynthetic down-regulation, and can be observed at forest scales. (2) Our findings also suggest a new sensor and methodology for the direct retrieval from space of changes in forest LUE by measuring PRI as a function of shadow fraction using a multi-angle spectrometer simultaneously retrieving both shadow fraction and PRI
An assessment of photosynthetic light use efficiency from space: modeling the atmospheric and directional impacts on PRI reflectance
Estimation of photosynthetic light use efficiency (?) from satellite observations is an important component of climate change research. The photochemical reflectance index, a narrow waveband index based on the reflectance at 531 and 570 nm, allows sampling of the photosynthetic activity of leaves; upscaling of these measurements to landscape and global scales, however, remains challenging. Only a few studies have used spaceborne observations of PRI so far, and research has largely focused on the MODIS sensor. Its daily global coverage and the capacity to detect a narrow reflectance band at 531 nm make it the best available choice for sensing ? from space. Previous results however, have identified a number of key issues with MODIS-based observations of PRI. First, the differences between the footprint of eddy covariance (EC) measurements and the MODIS footprint, which is determined by the sensor's observation geometry make a direct comparison between both data sources challenging and second, the PRI reflectance bands are affected by atmospheric scattering effects confounding the existing physiological signal. In this study we introduce a new approach for upscaling EC based ? measurements to MODIS. First, EC-measured ? values were “translated” into a tower-level optical PRI signal using AMSPEC, an automated multi-angular, tower-based spectroradiometer instrument. AMSPEC enabled us to adjust tower-measured PRI values to the individual viewing geometry of each MODIS overpass. Second, MODIS data were atmospherically corrected using a Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm, which uses a time series approach and an image-based rather than pixel-based processing for simultaneous retrievals of atmospheric aerosol and surface bidirectional reflectance (BRDF). Using this approach, we found a strong relationship between tower-based and spaceborne reflectance measurements (r2 = 0.74, p < 0.01) throughout the vegetation period of 2006. Swath (non-gridded) observations yielded stronger correlations than gridded data (r2 = 0.58, p < 0.01) both of which included forward and backscatter observations. Spaceborne PRI values were strongly related to canopy shadow fractions and varied with different levels of ?. We conclude that MAIAC-corrected MODIS observations were able to track the site-level physiological changes from space throughout the observation period
The Atmospheric Imaging Mission for Northern Regions: AIM-North
AIM-North is a proposed satellite mission that would provide observations of unprecedented frequency and density for monitoring northern greenhouse gases (GHGs), air quality (AQ) and vegetation. AIM-North would consist of two satellites in a highly elliptical orbit formation, observing over land from ∼40°N to 80°N multiple times per day. Each satellite would carry a near-infrared to shortwave infrared imaging spectrometer for CO2, CH4, and CO, and an ultraviolet-visible imaging spectrometer for air quality. Both instruments would measure solar-induced fluorescence from vegetation. A cloud imager would make near-real-time observations, which could inform the pointing of the other instruments to focus only on the clearest regions. Multiple geostationary (GEO) AQ and GHG satellites are planned for the 2020s, but they will lack coverage of northern regions like the Arctic. AIM-North would address this gap with quasi-geostationary observations of the North and overlap with GEO coverage to facilitate intercomparison and fusion of these datasets. The resulting data would improve our ability to forecast northern air quality and quantify fluxes of GHG and AQ species from forests, permafrost, biomass burning and anthropogenic activity, furthering our scientific understanding of these processes and supporting environmental policy
Recessive inborn errors of type I IFN immunity in children with COVID-19 pneumonia
In an international cohort of 112 children hospitalized for moderate to critical COVID-19 pneumonia, we identified 12 children with one of four known recessive inborn errors of type I interferon immunity: X-linked TLR7 and autosomal IFNAR1, STAT2, and TYK2 deficiencies.Recessive or dominant inborn errors of type I interferon (IFN) immunity can underlie critical COVID-19 pneumonia in unvaccinated adults. The risk of COVID-19 pneumonia in unvaccinated children, which is much lower than in unvaccinated adults, remains unexplained. In an international cohort of 112 children (<16 yr old) hospitalized for COVID-19 pneumonia, we report 12 children (10.7%) aged 1.5-13 yr with critical (7 children), severe (3), and moderate (2) pneumonia and 4 of the 15 known clinically recessive and biochemically complete inborn errors of type I IFN immunity: X-linked recessive TLR7 deficiency (7 children) and autosomal recessive IFNAR1 (1), STAT2 (1), or TYK2 (3) deficiencies. Fibroblasts deficient for IFNAR1, STAT2, or TYK2 are highly vulnerable to SARS-CoV-2. These 15 deficiencies were not found in 1,224 children and adults with benign SARS-CoV-2 infection without pneumonia (P = 1.2 x 10(-11)) and with overlapping age, sex, consanguinity, and ethnicity characteristics. Recessive complete deficiencies of type I IFN immunity may underlie similar to 10% of hospitalizations for COVID-19 pneumonia in children
Human genetic and immunological determinants of critical COVID-19 pneumonia
SARS-CoV-2 infection is benign in most individuals but, in around 10% of cases, it triggers hypoxaemic COVID-19 pneumonia, which leads to critical illness in around 3% of cases. The ensuing risk of death (approximately 1% across age and gender) doubles every five years from childhood onwards and is around 1.5 times greater in men than in women. Here we review the molecular and cellular determinants of critical COVID-19 pneumonia. Inborn errors of type I interferons (IFNs), including autosomal TLR3 and X-chromosome-linked TLR7 deficiencies, are found in around 1-5% of patients with critical pneumonia under 60 years old, and a lower proportion in older patients. Pre-existing auto-antibodies neutralizing IFN alpha, IFN beta and/or IFN omega, which are more common in men than in women, are found in approximately 15-20% of patients with critical pneumonia over 70 years old, and a lower proportion in younger patients. Thus, at least 15% of cases of critical COVID-19 pneumonia can be explained. The TLR3- and TLR7-dependent production of type I IFNs by respiratory epithelial cells and plasmacytoid dendritic cells, respectively, is essential for host defence against SARS-CoV-2. In ways that can depend on age and sex, insufficient type I IFN immunity in the respiratory tract during the first few days of infection may account for the spread of the virus, leading to pulmonary and systemic inflammation
Autoantibodies against type I IFNs in patients with life-threatening COVID-19
International audienceInterindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-ω (IFN-ω) (13 patients), against the 13 types of IFN-α (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men