700 research outputs found

    The prevalence of obesity in children with autism: a secondary data analysis using nationally representative data from the National Survey of Children's Health

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prevalence of childhood obesity has increased dramatically in the last two decades and numerous efforts to understand, intervene on, and prevent this significant threat to children's health are underway for many segments of the pediatric population. Understanding the prevalence of obesity in populations of children with developmental disorders is an important undertaking, as the factors that give rise to obesity may not be the same as for typically developing children, and because prevention and treatment efforts may need to be tailored to meet their needs and the needs of their families. The goal of the current study was to estimate the prevalence of obesity in children and adolescents with autism.</p> <p>Methods</p> <p>This study was a secondary data analysis of cross-sectional nationally representative data collected by telephone interview of parents/guardians on 85,272 children ages 3-17 from the 2003-2004 National Survey of Children's Health (NSCH). Autism was determined by response to the question, "Has a doctor or health professional ever told you that your child has autism?" Children and adolescents were classified as obese accordingto CDC guidelines for body mass index (BMI) for age and sex.</p> <p>Results</p> <p>The prevalence of obesity in children with autism was 30.4% compared to 23.6% of children without autism (p = .075). The unadjusted odds of obesity in children with autism was 1.42 (95% confidence interval (CI): 1.00, 2.02, p = .052) compared to children without autism.</p> <p>Conclusions</p> <p>Based on US nationally representative data, children with autism have a prevalence of obesity at least as high as children overall. These findings suggest that additional research is warranted to understand better the factors that influence the development of obesity in this population of children.</p

    Differences in inflammation and acute phase response but similar genotoxicity in mice following pulmonary exposure to graphene oxide and reduced graphene oxide

    Get PDF
    We investigated toxicity of 2-3 layered >1 μm sized graphene oxide (GO) and reduced graphene oxide (rGO) in mice following single intratracheal exposure with respect to pulmonary inflammation, acute phase response (biomarker for risk of cardiovascular disease) and genotoxicity. In addition, we assessed exposure levels of particulate matter emitted during production of graphene in a clean room and in a normal industrial environment using chemical vapour deposition. Toxicity was evaluated at day 1, 3, 28 and 90 days (18, 54 and 162 μg/mouse), except for GO exposed mice at day 28 and 90 where only the lowest dose was evaluated. GO induced a strong acute inflammatory response together with a pulmonary (Serum-Amyloid A, Saa3) and hepatic (Saa1) acute phase response. rGO induced less acute, but a constant and prolonged inflammation up to day 90. Lung histopathology showed particle agglomerates at day 90 without signs of fibrosis. In addition, DNA damage in BAL cells was observed across time points and doses for both GO and rGO. In conclusion, pulmonary exposure to GO and rGO induced inflammation, acute phase response and genotoxicity but no fibrosis

    Discerning Tumor Status from Unstructured MRI Reports—Completeness of Information in Existing Reports and Utility of Automated Natural Language Processing

    Get PDF
    Information in electronic medical records is often in an unstructured free-text format. This format presents challenges for expedient data retrieval and may fail to convey important findings. Natural language processing (NLP) is an emerging technique for rapid and efficient clinical data retrieval. While proven in disease detection, the utility of NLP in discerning disease progression from free-text reports is untested. We aimed to (1) assess whether unstructured radiology reports contained sufficient information for tumor status classification; (2) develop an NLP-based data extraction tool to determine tumor status from unstructured reports; and (3) compare NLP and human tumor status classification outcomes. Consecutive follow-up brain tumor magnetic resonance imaging reports (2000–­2007) from a tertiary center were manually annotated using consensus guidelines on tumor status. Reports were randomized to NLP training (70%) or testing (30%) groups. The NLP tool utilized a support vector machines model with statistical and rule-based outcomes. Most reports had sufficient information for tumor status classification, although 0.8% did not describe status despite reference to prior examinations. Tumor size was unreported in 68.7% of documents, while 50.3% lacked data on change magnitude when there was detectable progression or regression. Using retrospective human classification as the gold standard, NLP achieved 80.6% sensitivity and 91.6% specificity for tumor status determination (mean positive predictive value, 82.4%; negative predictive value, 92.0%). In conclusion, most reports contained sufficient information for tumor status determination, though variable features were used to describe status. NLP demonstrated good accuracy for tumor status classification and may have novel application for automated disease status classification from electronic databases

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Highly Tunable Aptasensing Microarrays with Graphene Oxide Multilayers

    Get PDF
    A highly tunable layer-by-layer (LbL)-assembled graphene oxide (GO) array has been devised for high-throughput multiplex protein sensing. In this array, the fluorescence of different target-bound aptamers labeled with dye is efficiently quenched by GO through fluorescence resonance energy transfer (FRET), and simultaneous multiplex target detection is performed by recovering the quenched fluorescence caused by specific binding between an aptamer and a protein. Thin GO films consisting of 10 bilayers displayed a high quenching ability, yielding over 85% fluorescence quenching with the addition of a 2 mu M dye-labeled aptamer. The limit for human thrombin detection in the 6- and 10-bilayered GO array is estimated to be 0.1 and 0.001 nM, respectively, indicating highly tunable nature of LbL assembled GO multilayers in controlling the sensitivity of graphene-based FRET aptasensor. Furthermore, the GO chip could be reused up to four times simply by cleaning it with distilled water.open4

    The complex X-ray spectrum of NGC 4507

    Full text link
    XMM-Newton and Chandra/HETG spectra of the Compton-thin (NH 4x10^{23} cm^{-2}) Seyfert 2 galaxy, NGC 4507, are analyzed and discussed. The main results are: a) the soft X-ray emission is rich in emission lines; an (at least) two--zone photoionization region is required to explain the large range of ionization states. b) The 6.4 keV iron line is likely emitted from Compton-thick matter, implying the presence of two circumnuclear cold regions, one Compton-thick (the emitter), one Compton-thin (the cold absorber). c) Evidence of an Fe xxv absorption line is found in the Chandra/HETG spectrum. The column density of the ionized absorber is estimated to be a few x10^{22} cm^{-2}.Comment: accepted for publication in A&

    Differential gene expression in mouse primary hepatocytes exposed to the peroxisome proliferator-activated receptor α agonists

    Get PDF
    BACKGROUND: Fibrates are a unique hypolipidemic drugs that lower plasma triglyceride and cholesterol levels through their action as peroxisome proliferator-activated receptor alpha (PPARα) agonists. The activation of PPARα leads to a cascade of events that result in the pharmacological (hypolipidemic) and adverse (carcinogenic) effects in rodent liver. RESULTS: To understand the molecular mechanisms responsible for the pleiotropic effects of PPARα agonists, we treated mouse primary hepatocytes with three PPARα agonists (bezafibrate, fenofibrate, and WY-14,643) at multiple concentrations (0, 10, 30, and 100 μM) for 24 hours. When primary hepatocytes were exposed to these agents, transactivation of PPARα was elevated as measured by luciferase assay. Global gene expression profiles in response to PPARα agonists were obtained by microarray analysis. Among differentially expressed genes (DEGs), there were 4, 8, and 21 genes commonly regulated by bezafibrate, fenofibrate, and WY-14,643 treatments across 3 doses, respectively, in a dose-dependent manner. Treatments with 100 μM of bezafibrate, fenofibrate, and WY-14,643 resulted in 151, 149, and 145 genes altered, respectively. Among them, 121 genes were commonly regulated by at least two drugs. Many genes are involved in fatty acid metabolism including oxidative reaction. Some of the gene changes were associated with production of reactive oxygen species, cell proliferation of peroxisomes, and hepatic disorders. In addition, 11 genes related to the development of liver cancer were observed. CONCLUSION: Our results suggest that treatment of PPARα agonists results in the production of oxidative stress and increased peroxisome proliferation, thus providing a better understanding of mechanisms underlying PPARα agonist-induced hepatic disorders and hepatocarcinomas

    A dopaminergic switch for fear to safety transitions

    Get PDF
    Overcoming aversive emotional memories requires neural systems that detect when fear responses are no longer appropriate. The midbrain ventral tegmental area (VTA) dopamine system has been implicated in reward and more broadly in signalling when a better than expected outcome has occurred. This suggests that it may be important in guiding fear to safety transitions. We report that when an expected aversive outcome does not occur, activity in midbrain dopamine neurons is necessary to extinguish behavioral fear responses and engage molecular signalling events in extinction learning circuits. Furthermore, a specific dopamine projection to the nucleus accumbens medial shell is partially responsible for this effect. By contrast, a separate dopamine projection to the medial prefrontal cortex opposes extinction learning. This demonstrates a novel function for the canonical VTA-dopamine reward system and reveals opposing behavioural roles for different dopamine neuron projections in fear extinction learning

    Multi-Scaled Explorations of Binding-Induced Folding of Intrinsically Disordered Protein Inhibitor IA3 to its Target Enzyme

    Get PDF
    Biomolecular function is realized by recognition, and increasing evidence shows that recognition is determined not only by structure but also by flexibility and dynamics. We explored a biomolecular recognition process that involves a major conformational change – protein folding. In particular, we explore the binding-induced folding of IA3, an intrinsically disordered protein that blocks the active site cleft of the yeast aspartic proteinase saccharopepsin (YPrA) by folding its own N-terminal residues into an amphipathic alpha helix. We developed a multi-scaled approach that explores the underlying mechanism by combining structure-based molecular dynamics simulations at the residue level with a stochastic path method at the atomic level. Both the free energy profile and the associated kinetic paths reveal a common scheme whereby IA3 binds to its target enzyme prior to folding itself into a helix. This theoretical result is consistent with recent time-resolved experiments. Furthermore, exploration of the detailed trajectories reveals the important roles of non-native interactions in the initial binding that occurs prior to IA3 folding. In contrast to the common view that non-native interactions contribute only to the roughness of landscapes and impede binding, the non-native interactions here facilitate binding by reducing significantly the entropic search space in the landscape. The information gained from multi-scaled simulations of the folding of this intrinsically disordered protein in the presence of its binding target may prove useful in the design of novel inhibitors of aspartic proteinases
    corecore