319 research outputs found

    Incidence of calcaneal apophysitis (Sever’s disease) and return-to-play in adolescent athletes of a German youth soccer academy : a retrospective study of 10 years

    Get PDF
    Background Calcaneal apophysitis, or Sever's disease, is the most common cause of heel pain in childhood and adolescence. It is regarded as an overuse syndrome. Studies on the incidence of calcaneal apophysitis in young athletes and their associated return-to-play time are lacking in the current literature. The aim of our current study was to identify the incidence of calcaneal apophysitis in professional youth soccer, the associated time to return-to-play, predisposing factors and their impact on time to return-to-play. Methods Retrospective evaluation of injury data gathered from a German youth soccer academy in the years 2009–2018. In total, 4326 injury cases in 612 players were included in the study. The diagnosis and the follow-up visits were carried out in a weekly consultation hour at the youth academy. Results During the observation period of 10 years, 22 cases of calcaneal apophysitis were detected. The incidence of calcaneal apophysitis per 100 athletes per year was found to be 0.36. The mean age of the affected athletes at the time of diagnosis was 11.8 ± 2.1 years (MW ± SD). The complaints were unilateral in 20 and bilateral in two cases. Three of the 22 detected cases of calcaneal apophysitis (13.6%) were recurrent injuries. The mean time to return-to-play of the affected athletes was 60.7 ± 64.9 days (MW ± SD). Athletes with recurrent complaints showed longer recovery time and time to return-to-play when compared to players with primary diagnosed disease. Our results could show that neither age nor body mass index at the time of diagnosis had an impact on time to return-to-play. Conclusions This is the first study investigating the incidence of calcaneal apophysitis and the associated time to return-to-play in youth elite soccer. Calcaneal apophysitis results in substantial time loss for the athletes. Further prospective clinical studies are required to fully understand the etiology and risk factors for calcaneal apophysitis and therefore develop preventive strategies

    Framework For The Successful Set-up Of A Common Data Model In The Context Of An Industry 4.0-ready Plant Design Process

    Get PDF
    The production plant design process consists of a multitude of individual engineering disciplines, which rely on a variety of digital models. The individual tasks build up on each other, while each discipline consumes information from the previous processes. However, sharing relevant data across multiple companies is challenging and susceptible to miscommunication and delays. Furthermore, integrating diverse software systems, tools, and technologies create compatibility issues and hinder seamless integration. As a result, a heterogeneous, non-automated data and information landscape is created, characterized by a high level of manual data transfer. This represents a major problem on the way towards Industry 4.0. The goal of this paper is to provide a framework for the successful set-up of a common data model in the context of an Industry 4.0-ready plant design process across and along the value chain. For this purpose, a literature review of current problems in the cross-company and cross-departmental collaboration in the plant design process is provided and requirements for the framework are derived. Existing solutions and research projects are compiled and evaluated against the requirements, from which the framework's structure is concluded. The framework itself is intended to be holistic and must therefore not only include technical aspects (e.g. data interfaces, semantics), but also enable the entire organization and value chain to implement the common data model as part of the digital transformation process (e.g. employee skills, business strategy, legal conditions). Based on this, the framework is further elaborated by deducing calls for action for a successful set-up of a common data model within the research project DIAMOND (Digital plant modeling with neutral data formats). The focus should be on employees and their competencies, as these are prerequisites for shaping digital transformation. Future research must prioritize these actions to enhance technology readiness and organizational Industry 4.0 preparation

    Forward-Secure 0-RTT Goes Live: Implementation and Performance Analysis in QUIC

    Get PDF
    Modern cryptographic protocols, such as TLS 1.3 and QUIC, can send cryptographically protected data in zero round-trip times (0-RTT) , that is, without the need for a prior interactive handshake. Such protocols meet the demand for communication with minimal latency, but those currently deployed in practice achieve only rather weak security properties, as they may not achieve forward security for the first transmitted payload message and require additional countermeasures against replay attacks. Recently, 0-RTT protocols with full forward security and replay resilience have been proposed in the academic literature. These are based on puncturable encryption, which uses rather heavy building blocks, such as cryptographic pairings. Some constructions were claimed to have practical efficiency, but it is unclear how they compare concretely to protocols deployed in practice, and we currently do not have any benchmark results that new protocols can be compared with. We provide the first concrete performance analysis of a modern 0-RTT protocol with full forward security, by integrating the Bloom Filter Encryption scheme of Derler et al. (EUROCRYPT 2018) in the Chromium QUIC implementation and comparing it to Google\u27s original QUIC protocol. We find that for reasonable deployment parameters, the server CPU load increases approximately by a factor of eight and the memory consumption on the server increases significantly, but stays below 400 MB even for medium-scale deployments that handle up to 50K connections per day. The difference of the size of handshake messages is small enough that transmission time on the network is identical, and therefore not significant. We conclude that while current 0-RTT protocols with full forward security come with significant computational overhead, their use in practice is not infeasible, and may be used in applications where the increased CPU and memory load can be tolerated in exchange for full forward security and replay resilience on the cryptographic protocol level. Our results also serve as a first benchmark that can be used to assess the efficiency of 0-RTT protocols potentially developed in the future

    Exposure to radial extracorporeal shock waves modulates viability and gene expression of human skeletal muscle cells: a controlled in vitro study

    Get PDF
    Background: Recent clinical and animal studies have shown that extracorporeal shock wave therapy has a promoting influence on the healing process of musculoskeletal disorders. However, the underlying biological effects of extracorporeal shock wave therapy on human skeletal muscle cells have not yet been investigated. Methods: In this study, we investigated human skeletal muscle cells after exposure to radial extracorporeal shock waves in a standardized in vitro setup. Cells were isolated from muscle specimens taken from adult patients undergoing spine surgery. Primary muscle cells were exposed once or twice to radial extracorporeal shock waves in vitro with different energy flux densities. Cell viability and gene expression of the paired box protein 7 (Pax7), neural cell adhesion molecule (NCAM), and myogenic factor 5 (Myf5) and MyoD as muscle cell markers were compared to non-treated muscle cells that served as controls. Results: Isolated muscle cells were positive for the hallmark protein of satellite cells, Pax7, as well as for the muscle cell markers NCAM, MyoD, and Myf5. Exposure to radial extracorporeal shock waves at low energy flux densities enhanced cell viability, whereas higher energy flux densities had no further significant impact. Gene expression analyses of muscle specific genes (Pax7, NCAM, Myf5, and MyoD) demonstrated a significant increase after single exposure to the highest EFD (4 bar, 0.19 mJ/mm(2)) and after double exposure with the medium EFDs (2 and 3 bar;0.09 and 0.14 mJ/mm(2), respectively). Double exposure of the highest EFD, however, results in a significant down-regulation when compared to single exposure with this EFD. Conclusions: This is the first study demonstrating that radial extracorporal shock wave therapy has the potential to modulate the biological function of human skeletal muscle cells. Based on our experimental findings, we hypothesize that radial extracorporal shock wave therapy could be a promising therapeutic modality to improve the healing process of sports-related structural muscle injuries

    Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 4.7 fb−1 of s√=7TeV proton-proton collisions

    Get PDF
    Results are presented of a search for new particles decaying to large numbers of jets in association with missing transverse momentum, using 4.7 fb−1 of pp collision data at s√=7TeV collected by the ATLAS experiment at the Large Hadron Collider in 2011. The event selection requires missing transverse momentum, no isolated electrons or muons, and from ≄6 to ≄9 jets. No evidence is found for physics beyond the Standard Model. The results are interpreted in the context of a MSUGRA/CMSSM supersymmetric model, where, for large universal scalar mass m 0, gluino masses smaller than 840 GeV are excluded at the 95% confidence level, extending previously published limits. Within a simplified model containing only a gluino octet and a neutralino, gluino masses smaller than 870 GeV are similarly excluded for neutralino masses below 100 GeV

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter
    • 

    corecore