586 research outputs found

    A personal apocalypse

    Get PDF

    Pseudospectral methods for atoms in strong magnetic fields

    Full text link
    We present a new pseudospectral algorithm for the calculation of the structure of atoms in strong magnetic fields. We have verified this technique for one, two and three-electron atoms in zero magnetic fields against laboratory results and find typically better than one-percent accuracy. We further verify this technique against the state-of-the-art calculations of hydrogen, helium and lithium in strong magnetic fields (up to about 2×1062\times 10^{6} T) and find a similar level of agreement. The key enabling advantages of the algorithm are its simplicity (about 130 lines of commented code) and its speed (about 10210510^2-10^5 times faster than finite-element methods to achieve similar accuracy).Comment: 10 pages, version accepted to MNRA

    Prospects for precision measurements of atomic helium using direct frequency comb spectroscopy

    Full text link
    We analyze several possibilities for precisely measuring electronic transitions in atomic helium by the direct use of phase-stabilized femtosecond frequency combs. Because the comb is self-calibrating and can be shifted into the ultraviolet spectral region via harmonic generation, it offers the prospect of greatly improved accuracy for UV and far-UV transitions. To take advantage of this accuracy an ultracold helium sample is needed. For measurements of the triplet spectrum a magneto-optical trap (MOT) can be used to cool and trap metastable 2^3S state atoms. We analyze schemes for measuring the two-photon 23S43S2^3S \to 4^3S interval, and for resonant two-photon excitation to high Rydberg states, 23S33Pn3S,D2^3S \to 3^3P \to n^3S,D. We also analyze experiments on the singlet-state spectrum. To accomplish this we propose schemes for producing and trapping ultracold helium in the 1^1S or 2^1S state via intercombination transitions. A particularly intriguing scenario is the possibility of measuring the 11S21S1^1S \to 2^1S transition with extremely high accuracy by use of two-photon excitation in a magic wavelength trap that operates identically for both states. We predict a ``triple magic wavelength'' at 412 nm that could facilitate numerous experiments on trapped helium atoms, because here the polarizabilities of the 1^1S, 2^1S and 2^3S states are all similar, small, and positive.Comment: Shortened slightly and reformatted for Eur. Phys. J.

    risk status (Seginer

    Get PDF
    a b s t r a c t In the present study, we examined demographic differences in time attitudes in a sample of 293 adolescents. Time attitudes were measured using the Adolescent Time Attitude Scale Published by Elsevier Ltd on behalf of The Foundation for Professionals in Services for Adolescents. Time attitudes, one dimension of time perspective, refer to an individual's emotional and evaluative feelings toward the past, the present, and the future, and there is an extensive literature on the relationship between time attitudes and several other variables. For example, researchers have found that time attitudes are related to academic achievement (e.g., Some researchers have proposed that demographic variables both set the stage for and maintain individuals' time perspective

    From QCD lattice calculations to the equation of state of quark matter

    Get PDF
    We describe two-flavor QCD lattice data for the pressure at finite temperature and zero chemical potential within a quasiparticle model. Relying only on thermodynamic selfconsistency, the model is extended to nonzero chemical potential. The results agree with lattice calculations in the region of small chemical potential.Comment: 5 eps figure

    Rearing laying hens in aviaries reduces fearfulness following transfer to furnished cages

    Get PDF
    Appropriate rearing is essential for ensuring the welfare and productivity of laying hens. Early experience has the potential to affect the development of fearfulness. This study tested whether rearing in aviaries, as opposed to cages, reduces the fearfulness of laying hens after transfer to furnished cages. Fear responses were recorded as avoidance of a novel object in the home cage. Lohmann Selected Leghorns were reared in an aviary system or conventional rearing cages and then transported to furnished cages at 16 weeks, before the onset of lay. Observations of a selection of birds were conducted at 19 (N = 50 independent cages) and 21 (N = 48 independent cages) weeks of age. At 19 and 21 weeks, cage-reared birds showed higher levels of fearfulness indicated by spending more time away from the novel object compared to aviary-reared birds. These results suggest that rearing in an enriched aviary environment reduces fearfulness up to the fifth week after transfer to a new housing system, compared to rearing in cages

    Establishing HZ43 A, Sirius B, and RX J185635-3754 as soft X-ray standards: a cross-calibration between the Chandra LETG+HRC-S, the EUVE spectrometer, and the ROSAT PSPC

    Get PDF
    The absolute calibration of space-borne instruments in the soft X-ray regime rests strongly on model spectra of hot white dwarfs. We analyze the Chandra LETG+HRC-S observations of the white dwarfs HZ43 A and Sirius B and of the neutron star RX J185635-3754 in order to resolve current uncertainties in the soft X-ray spectral fluxes and photospheric parameters of the three stars. We have obtained improved parameters for which fit the observations from the optical to the soft X-ray regime. Our approach allows us to quote their absolute spectral fluxes at selected wavelengths which may aid the calibration of other space-borne instruments.Comment: 15 pages, 9 figure

    Pseudospectral Calculation of Helium Wave Functions, Expectation Values, and Oscillator Strength

    Full text link
    The pseudospectral method is a powerful tool for finding highly precise solutions of Schr\"{o}dinger's equation for few-electron problems. We extend the method's scope to wave functions with non-zero angular momentum and test it on several challenging problems. One group of tests involves the determination of the nonrelativistic electric dipole oscillator strength for the helium 111^1S 21\to 2^1P transition. The result achieved, 0.27616499(27)0.27616499(27), is comparable to the best in the literature. Another group of test applications is comprised of well-studied leading order finite nuclear mass and relativistic corrections for the helium ground state. A straightforward computation reaches near state-of-the-art accuracy without requiring the implementation of any special-purpose numerics. All the relevant quantities tested in this paper -- energy eigenvalues, S-state expectation values and bound-bound dipole transitions for S and P states -- converge exponentially with increasing resolution and do so at roughly the same rate. Each individual calculation samples and weights the configuration space wave function uniquely but all behave in a qualitatively similar manner. Quantum mechanical matrix elements are directly and reliably calculable with pseudospectral methods. The technical discussion includes a prescription for choosing coordinates and subdomains to achieve exponential convergence when two-particle Coulomb singularities are present. The prescription does not account for the wave function's non-analytic behavior near the three-particle coalescence which should eventually hinder the rate of the convergence. Nonetheless the effect is small in the sense that ignoring the higher-order coalescence does not appear to affect adversely the accuracy of any of the quantities reported nor the rate at which errors diminish.Comment: 24 pages, 12 figures, 6 tables. To be submitted to Physical Review A. LANL identifier 'LA-UR-11-10986

    Swift X-Ray Observations of Classical Novae. II. The Super Soft Source sample

    Full text link
    The Swift GRB satellite is an excellent facility for studying novae. Its rapid response time and sensitive X-ray detector provides an unparalleled opportunity to investigate the previously poorly sampled evolution of novae in the X-ray regime. This paper presents Swift observations of 52 Galactic/Magellanic Cloud novae. We included the XRT (0.3-10 keV) X-ray instrument count rates and the UVOT (1700-8000 Angstroms) filter photometry. Also included in the analysis are the publicly available pointed observations of 10 additional novae the X-ray archives. This is the largest X-ray sample of Galactic/Magellanic Cloud novae yet assembled and consists of 26 novae with super soft X-ray emission, 19 from Swift observations. The data set shows that the faster novae have an early hard X-ray phase that is usually missing in slower novae. The Super Soft X-ray phase occurs earlier and does not last as long in fast novae compared to slower novae. All the Swift novae with sufficient observations show that novae are highly variable with rapid variability and different periodicities. In the majority of cases, nuclear burning ceases less than 3 years after the outburst begins. Previous relationships, such as the nuclear burning duration vs. t_2 or the expansion velocity of the eject and nuclear burning duration vs. the orbital period, are shown to be poorly correlated with the full sample indicating that additional factors beyond the white dwarf mass and binary separation play important roles in the evolution of a nova outburst. Finally, we confirm two optical phenomena that are correlated with strong, soft X-ray emission which can be used to further increase the efficiency of X-ray campaigns.Comment: Accepted to ApJ Supplements. Full data for Table 2 and Figure 17 available in the electronic edition. New version of the previously posted paper since the earlier version was all set in landscape mod
    corecore