4,717 research outputs found

    Fourth Family Neutrinos and the Higgs Boson

    Get PDF
    We evaluate the LHC discovery potential for the fourth family Standard Model neutrinos in the process ppZ/hν4νˉ4WμWμpp\to Z/h\to\nu_{4}{\bar{\nu}_{4}}\to W\mu W\mu. We show that, depending on their masses, the simultaneous discovery of both the Higgs boson and the heavy neutrinos is probable at early stages of LHC operation. Results are presented for both Majorana and Dirac type fourth family neutrinos.Comment: 12 pages, uses axodraw.sty, v2: includes typo fixes, improved analysis, v4: minor modifications in response to the JHEP refere

    Possible Discovery Channel for New Charged Leptons at the LHC

    Full text link
    We propose a channel for the possible discovery of new charged leptons at the Large Hadron Collider. The proposed final state contains three same-sign leptons, making this new channel practically back- groundless. The method is illustrated for two different cases: the four-family Standard Model and the Grand Unified Theory based on the E6 gauge group. An example study taking 250 GeV as the charged lepton mass shows that in both models, about 8 signal events can be expected at 14 TeV center-of-mass energy with 1 fb^-1 of integrated luminosity. Although the event yield might not be sufficient for detailed measurements of the charged lepton properties, it would be sufficient to claim discovery through a counting experiment.Comment: 8 pages, 4 figures. v2 update includes an estimate of the backgrounds, consideration of the EW oblique parameters, and minor improvements. v3 update includes detector acceptance and ttbar backgroun

    Measurement of the Branching Fraction for B- --> D0 K*-

    Get PDF
    We present a measurement of the branching fraction for the decay B- --> D0 K*- using a sample of approximately 86 million BBbar pairs collected by the BaBar detector from e+e- collisions near the Y(4S) resonance. The D0 is detected through its decays to K- pi+, K- pi+ pi0 and K- pi+ pi- pi+, and the K*- through its decay to K0S pi-. We measure the branching fraction to be B.F.(B- --> D0 K*-)= (6.3 +/- 0.7(stat.) +/- 0.5(syst.)) x 10^{-4}.Comment: 7 pages, 1 postscript figure, submitted to Phys. Rev. D (Rapid Communications

    Measurement of Branching Fraction and Dalitz Distribution for B0->D(*)+/- K0 pi-/+ Decays

    Get PDF
    We present measurements of the branching fractions for the three-body decays B0 -> D(*)-/+ K0 pi^+/-andtheirresonantsubmodes and their resonant submodes B0 -> D(*)-/+ K*+/- using a sample of approximately 88 million BBbar pairs collected by the BABAR detector at the PEP-II asymmetric energy storage ring. We measure: B(B0->D-/+ K0 pi+/-)=(4.9 +/- 0.7(stat) +/- 0.5 (syst)) 10^{-4} B(B0->D*-/+ K0 pi+/-)=(3.0 +/- 0.7(stat) +/- 0.3 (syst)) 10^{-4} B(B0->D-/+ K*+/-)=(4.6 +/- 0.6(stat) +/- 0.5 (syst)) 10^{-4} B(B0->D*-/+ K*+/-)=(3.2 +/- 0.6(stat) +/- 0.3 (syst)) 10^{-4} From these measurements we determine the fractions of resonant events to be : f(B0-> D-/+ K*+/-) = 0.63 +/- 0.08(stat) +/- 0.04(syst) f(B0-> D*-/+ K*+/-) = 0.72 +/- 0.14(stat) +/- 0.05(syst)Comment: 7 pages, 3 figures submitted to Phys. Rev. Let

    Study of e+e- --> pi+ pi- pi0 process using initial state radiation with BABAR

    Get PDF
    The process e+e- --> pi+ pi- pi0 gamma has been studied at a center-of-mass energy near the Y(4S) resonance using a 89.3 fb-1 data sample collected with the BaBar detector at the PEP-II collider. From the measured 3pi mass spectrum we have obtained the products of branching fractions for the omega and phi mesons, B(omega --> e+e-)B(omega --> 3pi)=(6.70 +/- 0.06 +/- 0.27)10-5 and B(phi --> e+e-)B(phi --> 3pi)=(4.30 +/- 0.08 +/- 0.21)10-5, and evaluated the e+e- --> pi+ pi- pi0 cross section for the e+e- center-of-mass energy range 1.05 to 3.00 GeV. About 900 e+e- --> J/psi gamma --> pi+ pi- pi0 gamma events have been selected and the branching fraction B(J/psi --> pi+ pi- pi0)=(2.18 +/- 0.19)% has been measured.Comment: 21 pages, 37 postscript figues, submitted to Phys. Rev.

    Search for the W-exchange decays B0 --> Ds(*)- Ds(*)+

    Full text link
    We report a search for the decays B0DsDs+B^{0} \to D_{s}^{-} D_{s}^{+}, B0DsDs+B^{0} \to D_{s}^{*-} D_{s}^{+}, B0DsDs+B^{0} \to D_{s}^{*-} D_{s}^{*+} in a sample of 232 million Υ(4S)\Upsilon(4S) decays to \BBb ~pairs collected with the \babar detector at the PEP-II asymmetric-energy e+ee^+ e^- storage ring. We find no significant signal and set upper bounds for the branching fractions: B(B0DsDs+)<1.0×104,B(B0DsDs+)<1.3×104{\cal B}(B^{0} \to D_{s}^{-} D_{s}^{+}) < 1.0 \times 10^{-4}, {\cal B}(B^{0} \to D_{s}^{*-} D_{s}^{+}) < 1.3 \times 10^{-4} and B(B0DsDs+)<2.4×104{\cal B}(B^{0} \to D_{s}^{*-} D_{s}^{*+}) < 2.4 \times 10^{-4} at 90% confidence level.Comment: 8 pages, 2 figures, submitted to PRD-R

    Measurement of the B+ --> p pbar K+ Branching Fraction and Study of the Decay Dynamics

    Get PDF
    With a sample of 232x10^6 Upsilon(4S) --> BBbar events collected with the BaBar detector, we study the decay B+ --> p pbar K+ excluding charmonium decays to ppbar. We measure a branching fraction Br(B+ --> p pbar K+)=(6.7+/-0.5+/-0.4)x10^{-6}. An enhancement at low ppbar mass is observed and the Dalitz plot asymmetry suggests dominance of the penguin amplitude in this B decay. We search for a pentaquark candidate Theta*++ decaying into pK+ in the mass range 1.43 to 2.00 GeV/c2 and set limits on Br(B+ --> Theta*++pbar)xBr(Theta*++ --> pK+) at the 10^{-7} level.Comment: 8 pages, 7 postscript figures, submitted to Phys. Rev. D (Rapid Communications

    Evidence for the Rare Decay B -> K*ll and Measurement of the B -> Kll Branching Fraction

    Get PDF
    We present evidence for the flavor-changing neutral current decay BK+B\to K^*\ell^+\ell^- and a measurement of the branching fraction for the related process BK+B\to K\ell^+\ell^-, where +\ell^+\ell^- is either an e+ee^+e^- or μ+μ\mu^+\mu^- pair. These decays are highly suppressed in the Standard Model, and they are sensitive to contributions from new particles in the intermediate state. The data sample comprises 123×106123\times 10^6 Υ(4S)BBˉ\Upsilon(4S)\to B\bar{B} decays collected with the Babar detector at the PEP-II e+ee^+e^- storage ring. Averaging over K()K^{(*)} isospin and lepton flavor, we obtain the branching fractions B(BK+)=(0.650.13+0.14±0.04)×106{\mathcal B}(B\to K\ell^+\ell^-)=(0.65^{+0.14}_{-0.13}\pm 0.04)\times 10^{-6} and B(BK+)=(0.880.29+0.33±0.10)×106{\mathcal B}(B\to K^*\ell^+\ell^-)=(0.88^{+0.33}_{-0.29}\pm 0.10)\times 10^{-6}, where the uncertainties are statistical and systematic, respectively. The significance of the BK+B\to K\ell^+\ell^- signal is over 8σ8\sigma, while for BK+B\to K^*\ell^+\ell^- it is 3.3σ3.3\sigma.Comment: 7 pages, 2 postscript figues, submitted to Phys. Rev. Let

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal
    corecore