395 research outputs found

    Models of the ICM with Heating and Cooling: Explaining the Global and Structural X-ray Properties of Clusters

    Full text link
    (Abridged) Theoretical models that include only gravitationally-driven processes fail to match the observed mean X-ray properties of clusters. As a result, there has recently been increased interest in models in which either radiative cooling or entropy injection play a central role in mediating the properties of the intracluster medium. Both sets of models give reasonable fits to the mean properties of clusters, but cooling only models result in fractions of cold baryons in excess of observationally established limits and the simplest entropy injection models do not treat the "cooling core" structure present in many clusters and cannot account for entropy profiles revealed by recent X-ray observations. We consider models that marry radiative cooling with entropy injection, and confront model predictions for the global and structural properties of massive clusters with the latest X-ray data. The models successfully and simultaneously reproduce the observed L-T and L-M relations, yield detailed entropy, surface brightness, and temperature profiles in excellent agreement with observations, and predict a cooled gas fraction that is consistent with observational constraints. The model also provides a possible explanation for the significant intrinsic scatter present in the L-T and L-M relations and provides a natural way of distinguishing between clusters classically identified as "cooling flow" clusters and dynamically relaxed "non-cooling flow" clusters. The former correspond to systems that had only mild levels (< 300 keV cm^2) of entropy injection, while the latter are identified as systems that had much higher entropy injection. This is borne out by the entropy profiles derived from Chandra and XMM-Newton.Comment: 20 pages, 15 figures, accepted for publication in the Astrophysical Journa

    Observational Tests of the Mass-Temperature Relation for Galaxy Clusters

    Get PDF
    We examine the relationship between the mass and x-ray gas temperature of galaxy clusters using data drawn from the literature. Simple theoretical arguments suggest that the mass of a cluster is related to the x-ray temperature as M∝Tx3/2M \propto T_x^{3/2}. Virial theorem mass estimates based on cluster galaxy velocity dispersions seem to be accurately described by this scaling with a normalization consistent with that predicted by the simulations of Evrard, Metzler, & Navarro (1996). X-ray mass estimates which employ spatially resolved temperature profiles also follow a Tx3/2T_x^{3/2} scaling although with a normalization about 40% lower than that of the fit to the virial masses. However, the isothermal ÎČ\beta-model and x-ray surface brightness deprojection masses follow a steeper ∝Tx1.8−2.0\propto T_x^{1.8-2.0} scaling. The steepness of the isothermal estimates is due to their implicitly assumed dark matter density profile of ρ(r)∝r−2\rho(r) \propto r^{-2} at large radii while observations and simulations suggest that clusters follow steeper profiles (e.g., ρ(r)∝r−2.4\rho(r) \propto r^{-2.4}).Comment: 25 pages, 10 figures, accepted by Ap

    The WARPS Survey. VI. Galaxy Cluster and Source Identifications from Phase I

    Get PDF
    We present in catalog form the optical identifications for objects from the first phase of the Wide Angle ROSAT Pointed Survey (WARPS). WARPS is a serendipitous survey of relatively deep, pointed ROSAT observations for clusters of galaxies. The X-ray source detection algorithm used by WARPS is Voronoi Tessellation and Percolation (VTP), a technique which is equally sensitive to point sources and extended sources of low surface brightness. WARPS-I is based on the central regions of 86 ROSAT PSPC fields, covering an area of 16.2 square degrees. We describe here the X-ray source screening and optical identification process for WARPS-I, which yielded 34 clusters at 0.06 \u3c z \u3c 0.75. Twenty-two of these clusters form a complete, statistically well-defined sample drawn from 75 of these 86 fields, covering an area of 14.1 square degrees, with a flux limit of F(0.5 × 2.0 keV) = 6.5 × 10-14 erg cm-2 s-1. This sample can be used to study the properties and evolution of the gas, galaxy and dark matter content of clusters and to constrain cosmological parameters. We compare in detail the identification process and findings of WARPS to those from other recently published X-ray surveys for clusters, including RDCS, SHARC-Bright, SHARC-south, and the CfA 160 deg2 survey

    The WARPS Survey: VI. Galaxy Cluster and Source Identifications from Phase I

    Get PDF
    We present in catalog form the optical identifications for objects from the first phase of the Wide Angle ROSAT Pointed Survey (WARPS). WARPS is a serendipitous survey of relatively deep, pointed ROSAT observations for clusters of galaxies. The X-ray source detection algorithm used by WARPS is Voronoi Tessellation and Percolation (VTP), a technique which is equally sensitive to point sources and extended sources of low surface brightness. WARPS-I is based on the central regions of 86 ROSAT PSPC fields, covering an area of 16.2 square degrees. We describe here the X-ray source screening and optical identification process for WARPS-I, which yielded 34 clusters at 0.06<z<0.75. Twenty-two of these clusters form a complete, statistically well defined sample drawn from 75 of these 86 fields, covering an area of 14.1 square degrees, with a flux limit of F (0.5-2.0 keV) = 6.5 \times 10^{-14} erg cm^{-2} s^{-1}}. This sample can be used to study the properties and evolution of the gas, galaxy and dark matter content of clusters, and to constrain cosmological parameters. We compare in detail the identification process and findings of WARPS to those from other recently published X-ray surveys for clusters, including RDCS, SHARC-Bright, SHARC-south and the CfA 160 deg2^2 survey.Comment: v3 reflects minor updates to tables 2 and

    Constraints on the Cluster Environments and Hot Spot Magnetic Field Strengths of the Radio Sources 3C254 and 3C280

    Get PDF
    We present new Chandra Observatory observations with archival HST and radio observations of 3C254, a radio quasara at z=0.734, and 3C280, a radio galaxy at z=0.996. We report the detection of X-ray and possible HST optical counterparts to the radio hot spots in 3C280 and of an X-ray counterpart to the radio hot spot in 3C254. We present constraints on the presence of X-ray clusters and on the magnetic field strengths in and around the radio hot spots. The spatial resolution of Chandra allows us to show that these sources are not in hot, massive clusters. The extended emission seen in ROSAT observations is resolved into point sources. The IGM around these sources is demonstrably not dense and hot. We conclude that radio sources are not reliable signposts of massive clusters at moderate redshifts. X-ray synchrotron emission could explain the radio, optical, and X-ray hot spot fluxes in 3C280, but it would require continuous acceleration of electrons to high Lorentz factors, since the synchrotron lifetime required to produce the X-ray emission is of order a human lifetime. SSC with or without IC scattering of the CMB can also explain the X-ray emission, but not the optical. We review all of the physical mechanisms and summarize our current constraints on the magnetic field strengths in andaround the hot spots of 3C254 and 3C280.Comment: accepted, ApJ, Feb 20, 2003 publication date estimate

    Entropy Profiles in the Cores of Cooling Flow Clusters of Galaxies

    Full text link
    The X-ray properties of a relaxed cluster of galaxies are determined primarily by its gravitational potential well and the entropy distribution of its intracluster gas. That entropy distribution reflects both the accretion history of the cluster and the feedback processes which limit the condensation of intracluster gas. Here we present Chandra observations of the core entropy profiles of nine classic "cooling-flow" clusters that appear relaxed and contain intracluster gas with a cooling time less than a Hubble time. We show that those entropy profiles are remarkably similar, despite the fact that the clusters range over a factor of three in temperature. They typically have an entropy level of ~ 130 keV cm^2 at 100 kpc that declines to a plateau ~10 keV cm^2 at \lesssim 10 kpc. Between these radii, the entropy profiles are \propto r^alpha with alpha ~ 1.0 - 1.3. The non-zero central entropy levels in these clusters correspond to a cooling time ~10^8 yr, suggesting that episodic heating on this timescale maintains the central entropy profile in a quasi-steady state.Comment: 4 figures, as submitted to the Astrophysical Journal (except for a typo correction in the abstract

    Standalone vertex ïŹnding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ Îł, H → Z Z∗ →4l and H →W W∗ →lÎœlÎœ. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined ïŹts probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson

    Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV

    Get PDF
    A measurement of the production cross-section for top quark pairs(\ttbar) in pppp collisions at \sqrt{s}=7 \TeV is presented using data recorded with the ATLAS detector at the Large Hadron Collider. Events are selected in two different topologies: single lepton (electron ee or muon Ό\mu) with large missing transverse energy and at least four jets, and dilepton (eeee, ΌΌ\mu\mu or eΌe\mu) with large missing transverse energy and at least two jets. In a data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton topology and 9 events in the dilepton topology. The corresponding expected backgrounds from non-\ttbar Standard Model processes are estimated using data-driven methods and determined to be 12.2±3.912.2 \pm 3.9 events and 2.5±0.62.5 \pm 0.6 events, respectively. The kinematic properties of the selected events are consistent with SM \ttbar production. The inclusive top quark pair production cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where the first uncertainty is statistical and the second systematic. The measurement agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables, CERN-PH number and final journal adde
    • 

    corecore