552 research outputs found

    Facilitating joint attention with salient pointing in interactions involving children with autism spectrum disorder

    Get PDF
    Children with autism spectrum disorder (ASD) reportedly have difficulties in responding to bids for joint attention, notably in following pointing gestures. Previous studies have predominantly built on structured observation measures and predefined coding categories to measure children’s responsiveness to gestures. However, how these gestures are designed and what detailed interactional work they can accomplish have received less attention. In this paper, we use a multimodal approach to conversation analysis (CA) to investigate how educators design their use of pointing in interactions involving school-aged children with ASD or autistic features. The analysis shows that pointing had specific sequential implications for the children beyond mere attention sharing. Occasionally, the co-occurring talk and pointing led to ambiguities when a child was interpreting their interactional connotations, specifically when the pointing gesture lacked salience. The study demonstrates that the CA approach can increase understanding of how to facilitate the establishment of joint attention

    Derailment-based fault tree analysis on risk management of railway turnout systems

    Get PDF
    Railway turnouts are fundamental mechanical infrastructures, which allow a rolling stock to divert one direction to another. As those are of a large number of engineering subsystems, e.g. track, signalling, earthworks, these particular sub-systems are expected to induce high potential through various kind of failure mechanisms. This could be a cause of any catastrophic event. A derailment, one of undesirable events in railway operation, often results, albeit rare occurs, in damaging to rolling stock, railway infrastructure and disrupt service, and has the potential to cause casualties and even loss of lives. As a result, it is quite significant that a well-designed risk analysis is performed to create awareness of hazards and to identify what parts of the systems may be at risk. This study will focus on all types of environment based failures as a result of numerous contributing factors noted officially as accident reports. This risk analysis is designed to help industry to minimise the occurrence of accidents at railway turnouts. The methodology of the study relies on accurate assessment of derailment likelihood, and is based on statistical multiple factors-integrated accident rate analysis. The study is prepared in the way of establishing product risks and faults, and showing the impact of potential process by Boolean algebra

    The 55 Cancri Planetary System: Fully Self-Consistent N-body Constraints and a Dynamical Analysis

    Get PDF
    We present an updated study of the planets known to orbit 55 Cancri A using 1,418 high-precision radial velocity observations from four observatories (Lick, Keck, Hobby-Eberly Telescope, Harlan J. Smith Telescope) and transit time/durations for the inner-most planet, 55 Cancri "e" (Winn et al. 2011). We provide the first posterior sample for the masses and orbital parameters based on self-consistent n-body orbital solutions for the 55 Cancri planets, all of which are dynamically stable (for at least 10810^8 years). We apply a GPU version of Radial velocity Using N-body Differential evolution Markov Chain Monte Carlo (RUN DMC; B. Nelson et al. 2014) to perform a Bayesian analysis of the radial velocity and transit observations. Each of the planets in this remarkable system has unique characteristics. Our investigation of high-cadence radial velocities and priors based on space-based photometry yields an updated mass estimate for planet "e" (8.09±0.268.09\pm0.26 M⊕_\oplus), which affects its density (5.51±1.001.325.51\pm^{1.32}_{1.00} g cm−3^{-3}) and inferred bulk composition. Dynamical stability dictates that the orbital plane of planet "e" must be aligned to within 60o60^o of the orbital plane of the outer planets (which we assume to be coplanar). The mutual interactions between the planets "b" and "c" may develop an apsidal lock about 180o180^o. We find 36-45% of all our model systems librate about the anti-aligned configuration with an amplitude of 51o±10o6o51^o\pm^{6^o}_{10^o}. Other cases showed short-term perturbations in the libration of ϖb−ϖc\varpi_b-\varpi_c, circulation, and nodding, but we find the planets are not in a 3:1 mean-motion resonance. A revised orbital period and eccentricity for planet "d" pushes it further toward the closest known Jupiter analog in the exoplanet population.Comment: 12 pages, 5 figures, 4 tables, accepted to MNRAS. Figure 2 (left) is updated from published version. Posterior samples available at http://www.personal.psu.edu/ben125/Downloads.htm

    Investigating the ability of high-rate GNSS-PPP for determining the vibration modes of engineering structures: small scale model experiment

    Get PDF
    This study evaluates the performance of the Precise Point Positioning method using Global Navigation Satellite System measurements (GNSS-PPP) for monitoring vibration modes of shear type buildings excited by harmonic ground motions and hammer tests. For experimental testing, the shear type lumped-mass building system is represented by a specially designed metal frame model, resembling a three story building, which was excited on a small scale shaking table. The excitation protocols applied were harmonic motions with different frequencies and amplitudes. The metal model has special deformation plates at the column tips to prevent the nonlinear rotations and out-of-plane motions for the entire system. The fundamental vibration periods of the model structure were computed by a Finite Element Mathematical (FEM) model, which were compared with the position variations determined by GNSS-PPP. Two GNSS receivers were mounted on top of the model structure on the line perpendicular to the motion axis to measure the rotation motion. The GNSS data comprised dual-frequency observations with a 10 Hz sampling rate. GNSS-derived positioning was obtained by processing the data using a post-mission kinematic PPP method with fixed phase ambiguities. Analysis of the characteristics of the vibration frequencies showed that the high-rate GNSS PPP method can capture the frequencies of first motion mode of shear type structural response when compared with the FEM output. Results demonstrate the efficiency of the high-rate GNSS PPP method in monitoring first motion mode of a natural frequency

    Investigating Performance of High-Rate GNSS-PPP and PPP-AR for Structural Health Monitoring: Dynamic Tests on Shake Table

    Get PDF
    © 2020 American Society of Civil Engineers. This paper investigates the usability of Global Navigation Satellite System (GNSS) Precise Point Positioning (PPP) methods, traditional PPP with a float-ambiguity solution and with ambiguity resolution (PPP-AR), in structural health monitoring applications based on experimental tests using a single-axis shake table. To evaluate the performance of the PPP methodologies, harmonic oscillations of the motion table with amplitudes ranging from 5 to 10 mm and frequency between 0.1 and 3 Hz were generated representing a wide range of possible structural motions. In addition, ground motion similar to those experienced during a real earthquake, the 1995 Kobe earthquake, and step motions were generated on the shake table. GNSS PPP-derived positioning results at 20 Hz were compared, in both of the frequency and time domains, with reference data comprising LVDT data and relative positioning data. Results show that both PPP methods' measurements can be used in the computation of harmonic oscillation frequencies compared to the LVDT and relative positioning values. The observed amplitudes of the harmonic oscillations are slightly different from the LVDT values on the order of millimeters. The results of a step motion experiment demonstrated that PPP-AR is better than traditional PPP in exhibiting quasi-static or static displacement. Moreover, the capabilities of traditional PPP and PPP-AR methods are evaluated with respect to the natural frequency of a small-scale structural model excited on the shake table. The frequency spectrum of this small-scale structural model derived from the PPP methods is consistent with finite-element model (FEM)-predicted values and relative positioning. The research presented here demonstrates the potential of the high-rate GNSS PPP and PPP-AR methods to reliably monitor structural and earthquake-induced vibration frequencies and amplitudes for both structural and seismological applications. Specifically, all results reveal that high-rate PPP-AR is more accurate than traditional PPP for both dynamic and static displacement detection

    Hybrid Wavelet and Principal Component Analyses Approach for Extracting Dynamic Motion Characteristics from Displacement Series Derived from Multipath-Affected High-Rate GNSS Observations

    Get PDF
    Nowadays, the high rate GNSS (Global Navigation Satellite Systems) positioning methods are widely used as a complementary tool to other geotechnical sensors, such as accelerometers, seismometers, and inertial measurement units (IMU), to evaluate dynamic displacement responses of engineering structures. However, the most common problem in structural health monitoring (SHM) using GNSS is the presence of surrounding structures that cause multipath errors in GNSS observations. Skyscrapers and high-rise buildings in metropolitan cities are generally close to each other, and long-span bridges have towers, main cable, and suspender cables. Therefore, multipath error in GNSS observations, which is typically added to the measurement noise, is inevitable while monitoring such flexible engineering structures. Unlike other errors like atmospheric errors, which are mostly reduced or modeled out, multipath errors are the largest remaining unmanaged error sources. The high noise levels of high-rate GNSS solutions limit their structural monitoring application for detecting load-induced semi-static and dynamic displacements. This study investigates the estimation of accurate dynamic characteristics (frequency and amplitude) of structural or seismic motions derived from multipath-affected high-rate GNSS observations. To this end, a novel hybrid model using both wavelet-based multiscale principal component analysis (MSPCA) and wavelet transform (MSPCAW) is designed to extract the amplitude and frequency of both GNSS relative- and PPP- (Precise Point Positioning) derived displacement motions. To evaluate the method, a shaking table with a GNSS receiver attached to it, collecting 10 Hz data, was set up close to a building. The table was used to generate various amplitudes and frequencies of harmonic motions. In addition, 50-Hz linear variable differential transformer (LVDT) observations were collected to verify the MSMPCAW model by comparing their results. The results showed that the MSPCAW could be efficiently used to extract the dynamic characteristics of noisy dynamic movements under seismic loads. Furthermore, the dynamic behavior of seismic motions can be extracted accurately using GNSS-PPP, and its dominant frequency equals that extracted by LVDT and relative GNSS positioning method. Its accuracy in determining the amplitude approaches 91.5% relative to the LVDT observations

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ÏˆÎł (with J/ψ → ÎŒ + ÎŒ −) where photons are reconstructed from Îł → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured

    Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 4.7 fb−1 of s√=7TeV proton-proton collisions

    Get PDF
    Results are presented of a search for new particles decaying to large numbers of jets in association with missing transverse momentum, using 4.7 fb−1 of pp collision data at s√=7TeV collected by the ATLAS experiment at the Large Hadron Collider in 2011. The event selection requires missing transverse momentum, no isolated electrons or muons, and from ≄6 to ≄9 jets. No evidence is found for physics beyond the Standard Model. The results are interpreted in the context of a MSUGRA/CMSSM supersymmetric model, where, for large universal scalar mass m 0, gluino masses smaller than 840 GeV are excluded at the 95% confidence level, extending previously published limits. Within a simplified model containing only a gluino octet and a neutralino, gluino masses smaller than 870 GeV are similarly excluded for neutralino masses below 100 GeV

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ Îł, H → Z Z∗ →4l and H →W W∗ →lÎœlÎœ. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined ïŹts probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson
    • 

    corecore