224 research outputs found

    Self Consistent Molecular Field Theory for Packing in Classical Liquids

    Full text link
    Building on a quasi-chemical formulation of solution theory, this paper proposes a self consistent molecular field theory for packing problems in classical liquids, and tests the theoretical predictions for the excess chemical potential of the hard sphere fluid. Results are given for the self consistent molecular fields obtained, and for the probabilities of occupancy of a molecular observation volume. For this system, the excess chemical potential predicted is as accurate as the most accurate prior theories, particularly the scaled particle (Percus-Yevick compressibility) theory. It is argued that the present approach is particularly simple, and should provide a basis for a molecular-scale description of more complex solutions.Comment: 6 pages and 5 figure

    Discovery and Characterization of a Caustic Crossing Microlensing Event in the SMC

    Full text link
    We present photometric observations and analysis of the second microlensing event detected towards the Small Magellanic Cloud (SMC), MACHO Alert 98-SMC-1. This event was detected early enough to allow intensive observation of the lightcurve. These observations revealed 98-SMC-1 to be the first caustic crossing, binary microlensing event towards the Magellanic Clouds to be discovered in progress. Frequent coverage of the evolving lightcurve allowed an accurate prediction for the date of the source crossing out of the lens caustic structure. The caustic crossing temporal width, along with the angular size of the source star, measures the proper motion of the lens with respect to the source, and thus allows an estimate of the location of the lens. Lenses located in the Galactic halo would have a velocity projected to the SMC of v^hat ~1500 km/s, while an SMC lens would typically have v^hat ~60 km/s. We have performed a joint fit to the MACHO/GMAN data presented here, including recent EROS data of this event. These joint data are sufficient to constrain the time for the lens to move an angle equal to the source angular radius; 0.116 +/- 0.010 days. We estimate a radius for the lensed source of 1.4 +/- 0.1 R_sun. This yields a projected velocity of v^hat = 84 +/- 9 km/s. Only 0.15% of halo lenses would be expected to have a v^hat value at least as small as this, while 31% of SMC lenses would be expected to have v^hat as large as this. This implies that the lensing system is more likely to reside in the SMC than in the Galactic halo.Comment: 16 pages, including 3 tables and 3 figures; submitted to The Astrophysical Journa

    The Ubiquitin-Proteasome Reporter GFPu Does Not Accumulate in Neurons of the R6/2 Transgenic Mouse Model of Huntington's Disease

    Get PDF
    Impairment of the ubiquitin-proteasome system (UPS) has long been considered an attractive hypothesis to explain the selective dysfunction and death of neurons in polyglutamine disorders such as Huntington's disease (HD). The fact that inclusion bodies in HD mouse models and patient brains are rich in ubiquitin and proteasome components suggests that the UPS may be hindered directly or indirectly by inclusion bodies or their misfolded monomeric or oligomeric precursors. However, studies into UPS function in various polyglutamine disease models have yielded conflicting results, suggesting mutant polyglutamine tracts may exert different effects on the UPS depending on protein context, expression level, subcellular localisation and cell-type. To investigate UPS function in a well-characterised mouse model of HD, we have crossed R6/2 HD mice with transgenic UPS reporter mice expressing the GFPu construct. The GFPu construct comprises GFP fused to a constitutive degradation signal (CL-1) that promotes its rapid degradation under conditions of a healthy UPS. Using a combination of immunoblot analysis, fluorescence and immunofluorescence microscopy studies, we found that steady-state GFPu levels were not detectably different between R6/2 and non-R6/2 brain. We observed no correlation between inclusion body formation and GFPu accumulation, suggesting no direct relationship between protein aggregation and global UPS inhibition in R6/2 mice. These findings suggest that while certain branches of the UPS can be impaired by mutant polyglutamine proteins, such proteins do not necessarily cause total blockade of UPS-dependent degradation. It is therefore likely that the relationship between mutant polyglutamine proteins and the UPS is more complex than originally anticipated

    Improving the sensitivity to gravitational-wave sources by modifying the input-output optics of advanced interferometers

    Get PDF
    We study frequency dependent (FD) input-output schemes for signal-recycling interferometers, the baseline design of Advanced LIGO and the current configuration of GEO 600. Complementary to a recent proposal by Harms et al. to use FD input squeezing and ordinary homodyne detection, we explore a scheme which uses ordinary squeezed vacuum, but FD readout. Both schemes, which are sub-optimal among all possible input-output schemes, provide a global noise suppression by the power squeeze factor, while being realizable by using detuned Fabry-Perot cavities as input/output filters. At high frequencies, the two schemes are shown to be equivalent, while at low frequencies our scheme gives better performance than that of Harms et al., and is nearly fully optimal. We then study the sensitivity improvement achievable by these schemes in Advanced LIGO era (with 30-m filter cavities and current estimates of filter-mirror losses and thermal noise), for neutron star binary inspirals, and for narrowband GW sources such as low-mass X-ray binaries and known radio pulsars. Optical losses are shown to be a major obstacle for the actual implementation of these techniques in Advanced LIGO. On time scales of third-generation interferometers, like EURO/LIGO-III (~2012), with kilometer-scale filter cavities, a signal-recycling interferometer with the FD readout scheme explored in this paper can have performances comparable to existing proposals. [abridged]Comment: Figs. 9 and 12 corrected; Appendix added for narrowband data analysi

    Upper limits on the strength of periodic gravitational waves from PSR J1939+2134

    Get PDF
    The first science run of the LIGO and GEO gravitational wave detectors presented the opportunity to test methods of searching for gravitational waves from known pulsars. Here we present new direct upper limits on the strength of waves from the pulsar PSR J1939+2134 using two independent analysis methods, one in the frequency domain using frequentist statistics and one in the time domain using Bayesian inference. Both methods show that the strain amplitude at Earth from this pulsar is less than a few times 102210^{-22}.Comment: 7 pages, 1 figure, to appear in the Proceedings of the 5th Edoardo Amaldi Conference on Gravitational Waves, Tirrenia, Pisa, Italy, 6-11 July 200

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Overexpression of Pax6 results in microphthalmia, retinal dysplasia and defective retinal ganglion cell axon guidance

    Get PDF
    Background: The transcription factor Pax6 is expressed by many cell types in the developing eye. Eyes do not form in homozygous loss-of-function mouse mutants (Pax6(Sey/Sey)) and are abnormally small in Pax6(Sey/+) mutants. Eyes are also abnormally small in PAX77 mice expressing multiple copies of human PAX6 in addition to endogenous Pax6; protein sequences are identical in the two species. The developmental events that lead to microphthalmia in PAX77 mice are not well-characterised, so it is not clear whether over- and under-expression of Pax6/PAX6 cause microphthalmia through similar mechanisms. Here, we examined the consequences of over-expression for the eye and its axonal connections. Results: Eyes form in PAX77(+/+) embryos but subsequently degenerate. At E12.5, we found no abnormalities in ocular morphology, retinal cell cycle parameters and the incidence of retinal cell death. From E14.5 on, we observed malformations of the optic disc. From E16.5 into postnatal life there is progressively more severe retinal dysplasia and microphthalmia. Analyses of patterns of gene expression indicated that PAX77(+/+) retinae produce a normal range of cell types, including retinal ganglion cells (RGCs). At E14.5 and E16.5, quantitative RT-PCR with probes for a range of molecules associated with retinal development showed only one significant change: a slight reduction in levels of mRNA encoding the secreted morphogen Shh at E16.5. At E16.5, tract-tracing with carbocyanine dyes in PAX77(+/+) embryos revealed errors in intraretinal navigation by RGC axons, a decrease in the number of RGC axons reaching the thalamus and an increase in the proportion of ipsilateral projections among those RGC axons that do reach the thalamus. A survey of embryos with different Pax6/PAX6 gene dosage (Pax6(Sey/+), Pax6(+/+), PAX77(+) and PAX77(+/+)) showed that (1) the total number of RGC axons projected by the retina and (2) the proportions that are sorted into the ipsilateral and contralateral optic tracts at the optic chiasm vary differently with gene dosage. Increasing dosage increases the proportion projecting ipsilaterally regardless of the size of the total projection. Conclusion: Pax6 overexpression does not obviously impair the initial formation of the eye and its major cell-types but prevents normal development of the retina from about E14.5, leading eventually to severe retinal degeneration in postnatal life. This sequence is different to that underlying microphthalmia in Pax6(+/-) heterozygotes, which is due primarily to defects in the initial stages of lens formation. Before the onset of severe retinal dysplasia, Pax6 overexpression causes defects of retinal axons, preventing their normal growth and navigation through the optic chiasm

    Sustained proliferation in cancer: mechanisms and novel therapeutic targets

    Get PDF
    Proliferation is an important part of cancer development and progression. This is manifest by altered expression and/or activity of cell cycle related proteins. Constitutive activation of many signal transduction pathways also stimulates cell growth. Early steps in tumor development are associated with a fibrogenic response and the development of a hypoxic environment which favors the survival and proliferation of cancer stem cells. Part of the survival strategy of cancer stem cells may manifested by alterations in cell metabolism. Once tumors appear, growth and metastasis may be supported by overproduction of appropriate hormones (in hormonally dependent cancers), by promoting angiogenesis, by undergoing epithelial to mesenchymal transition, by triggering autophagy, and by taking cues from surrounding stromal cells. A number of natural compounds (e.g., curcumin, resveratrol, indole-3-carbinol, brassinin, sulforaphane, epigallocatechin-3-gallate, genistein, ellagitannins, lycopene and quercetin) have been found to inhibit one or more pathways that contribute to proliferation (e.g., hypoxia inducible factor 1, nuclear factor kappa B, phosphoinositide 3 kinase/Akt, insulin-like growth factor receptor 1, Wnt, cell cycle associated proteins, as well as androgen and estrogen receptor signaling). These data, in combination with bioinformatics analyses, will be very important for identifying signaling pathways and molecular targets that may provide early diagnostic markers and/or critical targets for the development of new drugs or drug combinations that block tumor formation and progression

    MACHO Alert 95-30 : First Real-Time Observation of Extended Source Effects in Gravitational Microlensing

    Get PDF
    We present analysis of MACHO Alert 95-30, a dramatic gravitational microlensing event towards the Galactic bulge whose peak magnification departs significantly from the standard point-source microlensing model. Alert 95-30 was observed in real-time by the Global Microlensing Alert Network (GMAN), which obtained densely sampled photometric and spectroscopic data throughout the event. We interpret the light-curve ``fine structure'' as indicating transit of the lens across the extended face of the source star. This signifies resolution of a star several kpc distant. We find a lens angular impact parameter theta_{min}/theta_{source} = 0.715 +/- 0.003. This information, along with the radius and distance of the source, provides an additional constraint on the lensing system. Spectroscopic and photometric data indicate the source is an M4 III star of radius 61 +/- 12 Rsun, located on the far side of the bulge at 9 kpc. We derive a lens angular velocity, relative to the source, of 21.5 +/- 4.9 km/s/kpc, where the error is dominated by uncertainty in the source radius. Likelihood analysis yields a median lens mass of 0.67{+2.53}{-0.46} Msun, located with 80% probability in the Galactic bulge at a distance of 6.93{+1.56}{-2.25} kpc. If the lens is a main-sequence star, we can include constraints on the lens luminosity. This modifies our estimates to M_lens = 0.53{+0.52}{-0.35} Msun and D_lens = 6.57{+0.99}{-2.25} kpc. Spectra taken during the event show that the absorption line equivalent widths of H alpha and the TiO bands near 6700 A vary, as predicted for microlensing of an extended source. This is most likely due to center-to-limb variation in the stellar spectral lines. These data demonstrate the feasibility of using microlensing limb crossings as a tool to probe stellar atmospheres directly.Comment: 32 pages including 6 tables, and 15 figures; Uses AASTeX 4.0; submitted to The Astrophysical Journa

    Differential Responses of Calcifying and Non-Calcifying Epibionts of a Brown Macroalga to Present-Day and Future Upwelling pCO2

    Get PDF
    Seaweeds are key species of the Baltic Sea benthic ecosystems. They are the substratum of numerous fouling epibionts like bryozoans and tubeworms. Several of these epibionts bear calcified structures and could be impacted by the high pCO2 events of the late summer upwellings in the Baltic nearshores. Those events are expected to increase in strength and duration with global change and ocean acidification. If calcifying epibionts are impacted by transient acidification as driven by upwelling events, their increasing prevalence could cause a shift of the fouling communities toward fleshy species. The aim of the present study was to test the sensitivity of selected seaweed macrofoulers to transient elevation of pCO2 in their natural microenvironment, i.e. the boundary layer covering the thallus surface of brown seaweeds. Fragments of the macroalga Fucus serratus bearing an epibiotic community composed of the calcifiers Spirorbis spirorbis (Annelida) and Electra pilosa (Bryozoa) and the non-calcifier Alcyonidium hirsutum (Bryozoa) were maintained for 30 days under three pCO2 conditions: natural 460±59 µatm, present-day upwelling1193±166 µatm and future upwelling 3150±446 µatm. Only the highest pCO2 caused a significant reduction of growth rates and settlement of S. spirorbis individuals. Additionally, S. spirorbis settled juveniles exhibited enhanced calcification of 40% during daylight hours compared to dark hours, possibly reflecting a day-night alternation of an acidification-modulating effect by algal photosynthesis as opposed to an acidification-enhancing effect of algal respiration. E. pilosa colonies showed significantly increased growth rates at intermediate pCO2 (1193 µatm) but no response to higher pCO2. No effect of acidification on A. hirsutum colonies growth rates was observed. The results suggest a remarkable resistance of the algal macro-epibionts to levels of acidification occurring at present day upwellings in the Baltic. Only extreme future upwelling conditions impacted the tubeworm S. spirorbis, but not the bryozoans
    corecore