362 research outputs found

    Phase 1b/2a trial of the superoxide dismutase mimetic GC4419 to reduce chemoradiotherapy-induced oral mucositis in patients with oral cavity or oropharyngeal carcinoma

    Get PDF
    PURPOSE: To assess the safety of the superoxide dismutase mimetic GC4419 in combination with radiation and concurrent cisplatin for patients with oral cavity or oropharyngeal cancer (OCC) and to assess the potential of GC4419 to reduce severe oral mucositis (OM). PATIENTS AND METHODS: Patients with locally advanced OCC treated with definitive or postoperative intensity modulated radiation therapy (IMRT) plus cisplatin received GC4419 by 60-minute intravenous infusion, ending \u3c60 minutes before IMRT, Monday through Friday for 3 to 7 weeks, in a dose and duration escalation study. Oral mucositis was assessed twice weekly during and weekly after IMRT. RESULTS: A total of 46 patients received GC4419 in 11 separate dosing and duration cohorts: dose escalation occurred in 5 cohorts receiving 15 to 112 mg/d over 3 weeks (n=20), duration escalation in 3 cohorts receiving 112 mg/d over 4 to 6 weeks (n=12), and then 3 additional cohorts receiving 30 or 90 mg/d over 6 to 7 weeks (n=14). A maximum tolerated dose was not reached. One dose-limiting toxicity (grade 3 gastroenteritis and vomiting with hyponatremia) occurred in each of 2 separate cohorts at 112 mg. Nausea/vomiting and facial paresthesia during infusion seemed to be GC4419 dose-related. Severe OM occurred through 60 Gy in 4 of 14 patients (29%) dosed for 6 to 7 weeks, with median duration of only 2.5 days. CONCLUSIONS: The safety of GC4419 concurrently with chemoradiation for OCC was acceptable. Toxicities included nausea/vomiting and paresthesia. Doses of 30 and 90 mg/d administered for 7 weeks were selected for further study. In an exploratory analysis, severe OM seemed less frequent and briefer than expected

    Chemical Cartography with APOGEE: Large-scale Mean Metallicity Maps of the Milky Way

    Get PDF
    We present Galactic mean metallicity maps derived from the first year of the SDSS-III APOGEE experiment. Mean abundances in different zones of Galactocentric radius (0 < R < 15 kpc) at a range of heights above the plane (0 < |z| < 3 kpc), are derived from a sample of nearly 20,000 stars with unprecedented coverage, including stars in the Galactic mid-plane at large distances. We also split the sample into subsamples of stars with low and high-[{\alpha}/M] abundance ratios. We assess possible biases in deriving the mean abundances, and find they are likely to be small except in the inner regions of the Galaxy. A negative radial gradient exists over much of the Galaxy; however, the gradient appears to flatten for R < 6 kpc, in particular near the Galactic mid-plane and for low-[{\alpha}/M] stars. At R > 6 kpc, the gradient flattens as one moves off of the plane, and is flatter at all heights for high-[{\alpha}/M] stars than for low-[{\alpha}/M] stars. Alternatively, these gradients can be described as vertical gradients that flatten at larger Galactocentric radius; these vertical gradients are similar for both low and high-[{\alpha}/M] populations. Stars with higher [{\alpha}/M] appear to have a flatter radial gradient than stars with lower [{\alpha}/M]. This could suggest that the metallicity gradient has grown steeper with time or, alternatively, that gradients are washed out over time by migration of stars.Comment: 16 pages, 12 figures, submitted to A

    Do Spectroscopic Dense Gas Fractions Track Molecular Cloud Surface Densities?

    Get PDF
    We use ALMA and IRAM 30-m telescope data to investigate the relationship between the spectroscopically-traced dense gas fraction and the cloud-scale (120 pc) molecular gas surface density in five nearby, star-forming galaxies. We estimate the dense gas mass fraction at 650 pc and 2800 pc scales using the ratio of HCN (1-0) to CO (1-0) emission. We then use high resolution (120 pc) CO (2-1) maps to calculate the mass-weighted average molecular gas surface density within 650 pc or 2770 pc beam where the dense gas fraction is estimated. On average, the dense gas fraction correlates with the mass-weighted average molecular gas surface density. Thus, parts of a galaxy with higher mean cloud-scale gas surface density also appear to have a larger fraction of dense gas. The normalization and slope of the correlation do vary from galaxy to galaxy and with the size of the regions studied. This correlation is consistent with a scenario where the large-scale environment sets the gas volume density distribution, and this distribution manifests in both the cloud-scale surface density and the dense gas mass fraction.Comment: 11 pages, 4 figures, accepted for publication in The Astrophysical Journal Letter

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected

    Clinical predictors of 3- and 6-month outcome for mild traumatic brain injury patients with a negative head CT scan in the emergency department: A TRACK-TBI pilot study

    Get PDF
    Aconsiderable subset of mild traumatic brain injury (mTBI) patients fail to return to baseline functional status at or beyond 3 months postinjury. Identifying at-risk patients for poor outcome in the emergency department (ED) may improve surveillance strategies and referral to care. Subjects with mTBI (Glasgow Coma Scale 13–15) and negative ED initial head CT < 24 h of injury, completing 3- or 6-month functional outcome (Glasgow Outcome Scale-Extended; GOSE), were extracted from the prospective, multicenter Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Pilot study. Outcomes were dichotomized to full recovery (GOSE = 8) vs functional deficits (GOSE < 8). Univariate predictors with p < 0.10 were considered for multivariable regression. Adjusted odds ratios (AOR) were reported for outcome predictors. Significance was assessed at p < 0.05. Subjects who completed GOSE at 3- and 6-month were 211 (GOSE < 8: 60%) and 185 (GOSE < 8: 65%). Risk factors for 6-month GOSE < 8 included less education (AOR = 0.85 per-year increase, 95% CI: (0.74–0.98)), prior psychiatric history (AOR = 3.75 (1.73–8.12)), Asian/minority race (American Indian/Alaskan/Hawaiian/Pacific Islander) (AOR = 23.99 (2.93–196.84)), and Hispanic ethnicity (AOR = 3.48 (1.29–9.37)). Risk factors for 3-month GOSE < 8 were similar with the addition of injury by assault predicting poorer outcome (AOR = 3.53 (1.17–10.63)). In mTBI patients seen in urban trauma center EDs with negative CT, education, injury by assault, Asian/minority race, and prior psychiatric history emerged as risk factors for prolonged disability

    Feeder layer- and animal product-free culture of neonatal foreskin keratinocytes: improved performance, usability, quality and safety

    Get PDF
    Since 1987, keratinocytes have been cultured at the Queen Astrid Military Hospital. These keratinocytes have been used routinely as auto and allografts on more than 1,000 patients, primarily to accelerate the healing of burns and chronic wounds. Initially the method of Rheinwald and Green was used to prepare cultured epithelial autografts, starting from skin samples from burn patients and using animal-derived feeder layers and media containing animal-derived products. More recently we systematically optimised our production system to accommodate scientific advances and legal changes. An important step was the removal of the mouse fibroblast feeder layer from the cell culture system. Thereafter we introduced neonatal foreskin keratinocytes (NFK) as source of cultured epithelial allografts, which significantly increased the consistency and the reliability of our cell production. NFK master and working cell banks were established, which were extensively screened and characterised. An ISO 9001 certified Quality Management System (QMS) governs all aspects of testing, validation and traceability. Finally, as far as possible, animal components were systematically removed from the cell culture environment. Today, quality controlled allograft production batches are routine and, due to efficient cryopreservation, stocks are created for off-the-shelf use. These optimisations have significantly increased the performance, usability, quality and safety of our allografts. This paper describes, in detail, our current cryopreserved allograft production process

    Type I interferon autoantibodies are associated with systemic immune alterations in patients with COVID-19

    Get PDF
    Neutralizing autoantibodies against type I interferons (IFNs) have been found in some patients with critical coronavirus disease 2019 (COVID-19), the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the prevalence of these antibodies, their longitudinal dynamics across the disease severity scale, and their functional effects on circulating leukocytes remain unknown. Here, in 284 patients with COVID-19, we found type I IFN–specific autoantibodies in peripheral blood samples from 19% of patients with critical disease and 6% of patients with severe disease. We found no type I IFN autoantibodies in individuals with moderate disease. Longitudinal profiling of over 600,000 peripheral blood mononuclear cells using multiplexed single-cell epitope and transcriptome sequencing from 54 patients with COVID-19 and 26 non–COVID-19 controls revealed a lack of type I IFN–stimulated gene (ISG-I) responses in myeloid cells from patients with critical disease. This was especially evident in dendritic cell populations isolated from patients with critical disease producing type I IFN–specific autoantibodies. Moreover, we found elevated expression of the inhibitory receptor leukocyte-associated immunoglobulin-like receptor 1 (LAIR1) on the surface of monocytes isolated from patients with critical disease early in the disease course. LAIR1 expression is inversely correlated with ISG-I expression response in patients with COVID-19 but is not expressed in healthy controls. The deficient ISG-I response observed in patients with critical COVID-19 with and without type I IFN–specific autoantibodies supports a unifying model for disease pathogenesis involving ISG-I suppression through convergent mechanisms

    Subgroup Analysis of Trials Is Rarely Easy (SATIRE): a study protocol for a systematic review to characterize the analysis, reporting, and claim of subgroup effects in randomized trials

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Subgroup analyses in randomized trials examine whether effects of interventions differ between subgroups of study populations according to characteristics of patients or interventions. However, findings from subgroup analyses may be misleading, potentially resulting in suboptimal clinical and health decision making. Few studies have investigated the reporting and conduct of subgroup analyses and a number of important questions remain unanswered. The objectives of this study are: 1) to describe the reporting of subgroup analyses and claims of subgroup effects in randomized controlled trials, 2) to assess study characteristics associated with reporting of subgroup analyses and with claims of subgroup effects, and 3) to examine the analysis, and interpretation of subgroup effects for each study's primary outcome.</p> <p>Methods</p> <p>We will conduct a systematic review of 464 randomized controlled human trials published in 2007 in the 118 Core Clinical Journals defined by the National Library of Medicine. We will randomly select journal articles, stratified in a 1:1 ratio by higher impact versus lower impact journals. According to 2007 ISI total citations, we consider the <it>New England Journal of Medicine, JAMA, Lancet, Annals of Internal Medicine</it>, and <it>BMJ </it>as higher impact journals. Teams of two reviewers will independently screen full texts of reports for eligibility, and abstract data, using standardized, pilot-tested extraction forms. We will conduct univariable and multivariable logistic regression analyses to examine the association of pre-specified study characteristics with reporting of subgroup analyses and with claims of subgroup effects for the primary and any other outcomes.</p> <p>Discussion</p> <p>A clear understanding of subgroup analyses, as currently conducted and reported in published randomized controlled trials, will reveal both strengths and weaknesses of this practice. Our findings will contribute to a set of recommendations to optimize the conduct and reporting of subgroup analyses, and claim and interpretation of subgroup effects in randomized trials.</p
    corecore