10 research outputs found
Recommended from our members
Effects of a novel E. coli phytase expressed in Pseudomonas fluorescens on growth, bone mineralization and nutrient digestibility in pigs fed corn-soybean meal diets
Two studies were conducted to determine the effects of a novel Escherichia coli phytase expressed in Pseudomonas fluorescens on growth performance, bone mineralization, and nutrient digestibility in pigs fed corn-soybean meal diets. In experiment 1, 160 nursery pigs (9.79 ± 1.22 kg) were randomly allotted to one of four treatments with 10 pens per treatment and four pigs per pen. Phase I and phase II diets were provided from d 0 to d 14 and d 14 to d 28, respectively. Treatments included: positive control (PC) with all nutrients meeting requirements; negative control (NC) with standardized total tract digestible (STTD) P reduced by 0.15% and 0.14% compared with PC in phase I and phase II, respectively; and NC diets containing 250 or 500 units of phytase (FTU) per kilogram. Results demonstrated that pigs fed PC had greater (P < 0.01) ADG and G:F for the overall experimental period, and greater (P < 0.01) bone ash and P concentrations, compared with pigs fed NC or diets with phytase supplementation. Pigs fed diets containing phytase had greater (P < 0.01) ADG and G:F for the overall experimental period compared with pigs fed the NC diet without phytase, and bone ash and P weights were increased (P < 0.01) as well. In experiment 2, 63 growing barrows (56.25 ± 2.54 kg) were blocked by BW and randomly allotted to one of seven treatments with nine pens per treatment and one pig per pen. A basal corn-soybean meal diet was formulated to meet nutrient requirements for growing pigs with the exception that STTD P was reduced by 0.18% compared with the requirement, and Ca was included to achieve a Ca:STTD P ratio of 2.15. Six additional diets were formulated by adding 250, 500, 750, 1,000, 1,500, or 2,000 FTU/kg of phytase to the basal diet. Pigs were fed experimental diets for 12 d with 7 d of adaptation and 5 d of fecal sample collection. Results indicated that there was a linear (P < 0.01) increase in apparent total tract digestibility of ash and ether extract, and STTD of Ca and P also increased (linear, P < 0.05) in response to increasing doses of phytase. Increasing phytase levels in the diets resulted in increase (quadratic, P < 0.05) in apparent ileal digestibility of Arg, His, Ile, Lys, Trp, Asp, and Glu. In conclusion, the novel E. coli phytase was effective in increasing growth performance, bone mineralization, and Ca and P digestibility in pigs fed corn-soybean meal-based diets. Results also indicated that this phytase had the potential to enhance the digestibility of fat and certain AA
NPM/ALK binds and phosphorylates the RNA/DNA-binding protein PSF in anaplastic large-cell lymphoma
The oncogenic fusion tyrosine kinase nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) induces cellular transformation in anaplastic large-cell lymphomas (ALCLs) carrying the t(2;5) chromosomal translocation. Protein-protein interactions involving NPM/ALK are important for the activation of downstream signaling pathways. This study was aimed at identifying novel NPM/ALK-binding proteins that might contribute to its oncogenic transformation. Using a proteomic approach, several RNA/DNA-binding proteins were found to coimmunoprecipitate with NPM/ALK, including the multifunctional polypyrimidine tract binding proteinassociated splicing factor (PSF). The interaction between NPM/ALK and PSF was dependent on an active ALK kinase domain and PSF was found to be tyrosine-phosphorylated in NPM/ALK-expressing cell lines and in primary ALK+ ALCL samples. Furthermore, PSF was shown to be a direct substrate of purified ALK kinase domain in vitro, and PSF Tyr293 was identified as the site of phosphorylation. Y293F PSF was not phosphorylated by NPM/ALK and was not delocalized in NPM/ALK+ cells. The expression of ALK fusion proteins induced delocalization of PSF from the nucleus to the cytoplasm and forced overexpression of PSF-inhibited proliferation and induced apoptosis in cells expressing NPM/ALK. PSF phosphorylation also increased its binding to RNA and decreased the PSF-mediated suppression of GAGE6 expression. These results identify PSF as a novel NPM/ALK-binding protein and substrate, and suggest that PSF function may be perturbed in NPM/ALK-transformed cells
SPARK: A US Cohort of 50,000 Families to Accelerate Autism Research
The Simons Foundation Autism Research Initiative (SFARI) has launched SPARKForAutism. org, a dynamic platform that is engaging thousands of individuals with autism spectrum disorder (ASD) and connecting them to researchers. By making all data accessible, SPARK seeks to increase our understanding of ASD and accelerate new supports and treatments for ASD