37 research outputs found

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    Identification and Characterization of NF-Y Transcription Factor Families in the Monocot Model Plant Brachypodium distachyon

    Get PDF
    BACKGROUND: Nuclear Factor Y (NF-Y) is a heterotrimeric transcription factor composed of NF-YA, NF-YB and NF-YC proteins. Using the dicot plant model system Arabidopsis thaliana (Arabidopsis), NF-Y were previously shown to control a variety of agronomically important traits, including drought tolerance, flowering time, and seed development. The aim of the current research was to identify and characterize NF-Y families in the emerging monocot model plant Brachypodium distachyon (Brachypodium) with the long term goal of assisting in the translation of known dicot NF-Y functions to the grasses. METHODOLOGY/PRINCIPAL FINDINGS: We identified, annotated, and further characterized 7 NF-YA, 17 NF-YB, and 12 NF-YC proteins in Brachypodium (BdNF-Y). By examining phylogenetic relationships, orthology predictions, and tissue-specific expression patterns for all 36 BdNF-Y, we proposed numerous examples of likely functional conservation between dicots and monocots. To test one of these orthology predictions, we demonstrated that a BdNF-YB with predicted orthology to Arabidopsis floral-promoting NF-Y proteins can rescue a late flowering Arabidopsis mutant. CONCLUSIONS/SIGNIFICANCE: The Brachypodium genome encodes a similar complement of NF-Y to other sequenced angiosperms. Information regarding NF-Y phylogenetic relationships, predicted orthologies, and expression patterns can facilitate their study in the grasses. The current data serves as an entry point for translating many NF-Y functions from dicots to the genetically tractable monocot model system Brachypodium. In turn, studies of NF-Y function in Brachypodium promise to be more readily translatable to the agriculturally important grasses

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Use of a latex biomembrane for bladder augmentation in a rabbit model: biocompatibility, clinical and histological outcomes

    Get PDF
    PURPOSE: To investigate histological features and biocompatibility of a latex biomembrane for bladder augmentation using a rabbit model. MATERIAL AND METHODS: After a partial cystectomy, a patch of a non-vulcanized latex biomembrane (2x4 cm) was sewn to the bladder with 5/0 monofilament polydioxanone sulfate in a watertight manner. Groups of 5 animals were sacrificed at 15, 45 and 90 days after surgery and the bladder was removed. The 5-µm preparations obtained from grafted area and normal bladder were stained with hematoxylin-eosin. Immunohistochemical staining was performed with a primary antibody against alpha-actin to assess muscle regeneration. RESULTS: No death, urinary leakage or graft extrusion occurred in any group. All bladders showed a spherical shape. Macroscopically, after 90 days, the latex biomembrane was not identifiable and the patch was indistinguishable from normal bladder. A bladder stone was found in one animal (6.6%). On the 90th day, histology revealed continuity of transitional epithelium of host bladder tissue on the patch area. At this time, the muscle layers were well organized in a similar fashion to native bladder muscle layers. The inflammatory process was higher on grafted areas when compared to controls: 15 days - p < 0.0001, 45 days - p < 0.001, and 90 days - p < 0.01. The anti alpha-actin immunoexpression peaked at 45 days, when the graft was observed covered by muscle cells. CONCLUSION: The latex biomembrane is biocompatible and can be used in models for bladder augmentation in rabbits. It promotes epithelium and muscle regeneration without urinary leakage
    corecore