1,434 research outputs found

    Approach to ground state and time-independent photon bound for massless spin-boson models

    Full text link
    It is widely believed that an atom interacting with the electromagnetic field (with total initial energy well-below the ionization threshold) relaxes to its ground state while its excess energy is emitted as radiation. Hence, for large times, the state of the atom+field system should consist of the atom in its ground state, and a few free photons that travel off to spatial infinity. Mathematically, this picture is captured by the notion of asymptotic completeness. Despite some recent progress on the spectral theory of such systems, a proof of relaxation to the ground state and asymptotic completeness was/is still missing, except in some special cases (massive photons, small perturbations of harmonic potentials). In this paper, we partially fill this gap by proving relaxation to an invariant state in the case where the atom is modelled by a finite-level system. If the coupling to the field is sufficiently infrared-regular so that the coupled system admits a ground state, then this invariant state necessarily corresponds to the ground state. Assuming slightly more infrared regularity, we show that the number of emitted photons remains bounded in time. We hope that these results bring a proof of asymptotic completeness within reach.Comment: 45 pages, published in Annales Henri Poincare. This archived version differs from the journal version because we corrected an inconsequential mistake in Section 3.5.1: to do this, a new paragraph was added after Lemma 3.

    Non-equilibrium work relations

    Full text link
    This is a brief review of recently derived relations describing the behaviour of systems far from equilibrium. They include the Fluctuation Theorem, Jarzynski's and Crooks' equalities, and an extended form of the Second Principle for general steady states. They are very general and their proofs are, in most cases, disconcertingly simple.Comment: Brief Summer School Lecture Note

    'Return to equilibrium' for weakly coupled quantum systems: a simple polymer expansion

    Full text link
    Recently, several authors studied small quantum systems weakly coupled to free boson or fermion fields at positive temperature. All the approaches we are aware of employ complex deformations of Liouvillians or Mourre theory (the infinitesimal version of the former). We present an approach based on polymer expansions of statistical mechanics. Despite the fact that our approach is elementary, our results are slightly sharper than those contained in the literature up to now. We show that, whenever the small quantum system is known to admit a Markov approximation (Pauli master equation \emph{aka} Lindblad equation) in the weak coupling limit, and the Markov approximation is exponentially mixing, then the weakly coupled system approaches a unique invariant state that is perturbatively close to its Markov approximation.Comment: 23 pages, v2-->v3: Revised version: The explanatory section 1.7 has changed and Section 3.2 has been made more explici

    Fluctuation theorems for stochastic dynamics

    Full text link
    Fluctuation theorems make use of time reversal to make predictions about entropy production in many-body systems far from thermal equilibrium. Here we review the wide variety of distinct, but interconnected, relations that have been derived and investigated theoretically and experimentally. Significantly, we demonstrate, in the context of Markovian stochastic dynamics, how these different fluctuation theorems arise from a simple fundamental time-reversal symmetry of a certain class of observables. Appealing to the notion of Gibbs entropy allows for a microscopic definition of entropy production in terms of these observables. We work with the master equation approach, which leads to a mathematically straightforward proof and provides direct insight into the probabilistic meaning of the quantities involved. Finally, we point to some experiments that elucidate the practical significance of fluctuation relations.Comment: 48 pages, 2 figures. v2: minor changes for consistency with published versio

    Fluctuations in Nonequilibrium Statistical Mechanics: Models, Mathematical Theory, Physical Mechanisms

    Get PDF
    The fluctuations in nonequilibrium systems are under intense theoretical and experimental investigation. Topical ``fluctuation relations'' describe symmetries of the statistical properties of certain observables, in a variety of models and phenomena. They have been derived in deterministic and, later, in stochastic frameworks. Other results first obtained for stochastic processes, and later considered in deterministic dynamics, describe the temporal evolution of fluctuations. The field has grown beyond expectation: research works and different perspectives are proposed at an ever faster pace. Indeed, understanding fluctuations is important for the emerging theory of nonequilibrium phenomena, as well as for applications, such as those of nanotechnological and biophysical interest. However, the links among the different approaches and the limitations of these approaches are not fully understood. We focus on these issues, providing: a) analysis of the theoretical models; b) discussion of the rigorous mathematical results; c) identification of the physical mechanisms underlying the validity of the theoretical predictions, for a wide range of phenomena.Comment: 44 pages, 2 figures. To appear in Nonlinearity (2007

    Relating the thermodynamic arrow of time to the causal arrow

    Full text link
    Consider a Hamiltonian system that consists of a slow subsystem S and a fast subsystem F. The autonomous dynamics of S is driven by an effective Hamiltonian, but its thermodynamics is unexpected. We show that a well-defined thermodynamic arrow of time (second law) emerges for S whenever there is a well-defined causal arrow from S to F and the back-action is negligible. This is because the back-action of F on S is described by a non-globally Hamiltonian Born-Oppenheimer term that violates the Liouville theorem, and makes the second law inapplicable to S. If S and F are mixing, under the causal arrow condition they are described by microcanonic distributions P(S) and P(S|F). Their structure supports a causal inference principle proposed recently in machine learning.Comment: 10 page

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE

    Search for New Physics with Jets and Missing Transverse Momentum in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for new physics is presented based on an event signature of at least three jets accompanied by large missing transverse momentum, using a data sample corresponding to an integrated luminosity of 36 inverse picobarns collected in proton--proton collisions at sqrt(s)=7 TeV with the CMS detector at the LHC. No excess of events is observed above the expected standard model backgrounds, which are all estimated from the data. Exclusion limits are presented for the constrained minimal supersymmetric extension of the standard model. Cross section limits are also presented using simplified models with new particles decaying to an undetected particle and one or two jets

    Search for anomalous t t-bar production in the highly-boosted all-hadronic final state

    Get PDF
    A search is presented for a massive particle, generically referred to as a Z', decaying into a t t-bar pair. The search focuses on Z' resonances that are sufficiently massive to produce highly Lorentz-boosted top quarks, which yield collimated decay products that are partially or fully merged into single jets. The analysis uses new methods to analyze jet substructure, providing suppression of the non-top multijet backgrounds. The analysis is based on a data sample of proton-proton collisions at a center-of-mass energy of 7 TeV, corresponding to an integrated luminosity of 5 inverse femtobarns. Upper limits in the range of 1 pb are set on the product of the production cross section and branching fraction for a topcolor Z' modeled for several widths, as well as for a Randall--Sundrum Kaluza--Klein gluon. In addition, the results constrain any enhancement in t t-bar production beyond expectations of the standard model for t t-bar invariant masses larger than 1 TeV.Comment: Submitted to the Journal of High Energy Physics; this version includes a minor typo correction that will be submitted as an erratu

    Combined search for the quarks of a sequential fourth generation

    Get PDF
    Results are presented from a search for a fourth generation of quarks produced singly or in pairs in a data set corresponding to an integrated luminosity of 5 inverse femtobarns recorded by the CMS experiment at the LHC in 2011. A novel strategy has been developed for a combined search for quarks of the up and down type in decay channels with at least one isolated muon or electron. Limits on the mass of the fourth-generation quarks and the relevant Cabibbo-Kobayashi-Maskawa matrix elements are derived in the context of a simple extension of the standard model with a sequential fourth generation of fermions. The existence of mass-degenerate fourth-generation quarks with masses below 685 GeV is excluded at 95% confidence level for minimal off-diagonal mixing between the third- and the fourth-generation quarks. With a mass difference of 25 GeV between the quark masses, the obtained limit on the masses of the fourth-generation quarks shifts by about +/- 20 GeV. These results significantly reduce the allowed parameter space for a fourth generation of fermions.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore