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links among the different approaches and the limitations of these approaches are not fully

understood. We focus on these issues, providing: a) analysis of the theoretical models; b)

discussion of the rigorous mathematical results; c) identification of the physical mechanisms

underlying the validity of the theoretical predictions, for a wide range of phenomena.
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1. Introduction

The study of fluctuations in statistical mechanics dates back to Einstein’s 1905 seminal work

on the Brownian motion [1], in which the first fluctuation-dissipation relation was given,

and to Einstein’s 1910 paper which turned Boltzmann’s entropy formula in one expression

for the probability of a fluctuation out of an equilibrium state [2]. Of the many authors

who continued Einstein’s work, we can recall but a few. In 1927, Ornstein derived the

fluctuation-dissipation relation for the random force acting on a Brownian particle [3]. In

1928, Nyquist obtained a formula for the spectral densities and correlation functions of the

thermal noise in linear electrical circuits, in terms of their impedance [4], which applies

to mechanical systems as well. In 1931, Onsager obtained the complementary result to

that of Nyquist: the calculation of the transport coefficients from the observation of the

thermal fluctuations [5, 6]. The fluctuation-dissipation theorem and the theory of transport
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coefficients received great impulse in the 1950’s, thanks to the works of authors such as

Callen, Welton, R. F. Greene, [7, 8], and M. S. Green and Kubo [9–12]. In 1953, Onsager

and Machlup provided a natural generalization to fluctuation paths of Einstein’s formula

for the probability of a fluctuation value [13,14]. In 1967, Alder and Wainwright discovered

long time tails in the velocity autocorrelation functions, which implied the non-existence

of the self-diffusion coefficient, in two dimensions [15]. Anomalous divergent behaviour

of the transport coefficients was studied also by Kadanoff and Swift, for systems near a

critical point [16]. Closely connected with the long time tails is the phenomenon of long

range correlations in nonequilibrium steady states, which was pointed out and studied by a

number of authors, including Cohen, Dorfman, Kirkpatrick, Oppenheim, Procaccia, Ronis,

Spohn [17–19]. Nonequilibrium fluctuation theorems have been obtained also by Hänggi

and Thomas [20, 21]. The transient time correlation function formalism, which yields an

exact relation between nonlinear steady state response and transient fluctuations in the

thermodynamic fluxes, has been developed by Visscher, Dufty, Lindenfeld, Cohen, Evans

and Morriss [22–25]. Under some differentiability conditions, Boffetta et al. and Falcioni et

al. [26,27] obtained a fluctuation response relation, which applies to states that can be very

far from equilibrium. Independently, Ruelle proved that those conditions are met by axiom

A systems, and obtained the same fluctuation response relation [28].

This necessarily brief and incomplete account shows that the object of research has

gradually shifted from equilibrium to nonequilibrium problems. But while the equilibrium

theory can be considered quite satisfactory and complete, the same cannot be said of the

nonequilibrium theory, which concerns a much wider range of phenomena.

The 1993 paper by Evans, Cohen and Morriss [29], on the fluctuations of the entropy

production rate of a deterministic particle system, modeling a shearing fluid, provided

a unifying framework for a variety of nonequilibrium phenomena, under a mathematical

expression nowadays called Fluctuation Relation (FR). Then, fluctuation relations for

transient states were proved by Evans and Searles in 1994 [30, 31], while Gallavotti and

Cohen obtained steady state relations for systems whose dynamics can be considered to

be Anosov, in 1995 [32, 33]. The FR is one example of the few exact, general results on

nonequilibrium systems, and extends the Green-Kubo and Onsager relations to far from

equilibrium states [34–36].

The subject of the present review is the FR for deterministic particle systems, with an

eye on open problems, and on the interplay of mathematical and physical investigations.

The connection with FRs for stochastic processes is also discussed. Section 2 summarizes

the history of FRs. Section 3 illustrates a class of deterministic, time reversal invariant

models of nonequilibrium systems, relevant in the study of FRs, and reports some new

results. Sections 4 and 5 illustrate, respectively, the mathematical theory, developed for the

phase space contraction rate, and the physical mechanisms underlying the validity of FRs

for quantities such as the energy dissipation rate. Section 6 is devoted to the Jarzynski

and Crooks relations and to their connection with the FRs. Sections 7 and 8 illustrate,

respectively, some stochastic versions of the FRs, including the Van Zon-Cohen relation, and
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the theory developed by Jona-Lasinio and collaborators. Section 9 describes some numerical

and experimental tests of the FRs. Concluding remarks are made in Section 10.

1.1. Prologue

Why focus on deterministic rather than stochastic FRs? The stochastic approach seems

to produce easily the same results that the dynamical approach obtains with much effort.

Kurchan says that this is the case because the stochastic description, commonly assumed to

be a reduced (mesoscopic) representation of the “chaotic” microscopic dynamics, is free from

the intricate fractal structures of deterministic dynamics [37]. Then, considering that the

mathematical approach to deterministic FRs makes assumptions which, in general, cannot

be directly verified [37], one may conclude that the stochastic approach is to be preferred

to the deterministic one. In reality, there are various reasons to consider deterministic

systems. For instance, fundamental issues, like irreversibility, can hardly be understood

within the framework of the intrinsically irreversible stochastic processes [37]. Also,

stochastic descriptions assume that averages characterize single systems. This is justified

only if the microscopic dynamics are sufficiently “chaotic” that the average behaviour is

established within mesoscopic time scales [38], as happens in Thermodynamics, thanks to

the interactions among the particles, and to their very large number. However, in certain

circumstances particles do not interact or interact more with their environment than with

each other [39, 40]; the number of particles may be small; strong external drivings may

produce ordered phases; etc. In such cases, the local thermodynamic equilibrium is violated

and average behaviours do not characterize single systems, they only characterize ensembles.

Furthermore, the identification of physical observables in stochastic processes is often affected

by ambiguities. As far as the microscopic-mesoscopic connection is concerned only a few

models, like the Lorentz gas [41–43], have been mapped into Markov processes [44], and the

mapping concerns the phase space, not the real space.

Adding that certain results obtained for stochastic processes were not obvious in terms

of reversible equations of motion (cf. Section 8 on temporal asymmetries), while results such

as the FRs were not obvious in the stochastic description, we conclude that the deterministic

and the stochastic approaches are both necessary to provide a unifying framework, for the

field of nonequilibrium physics, and its applications. In this review, we mainly focus on

deterministic FRs, but we also discuss their relations with the stochastic ones.

We illustrate two classes of FRs, transient and steady state FRs. The transient FRs

concern the time dependent response to external drivings of ensembles of systems, or

ensembles of experiments, and hold under very general conditions (time reversibility suffices

for those obtained by Evans and Searles; Hamiltonian dynamics suffices for the one derived by

Jarzynski). These relations have interesting applications in the study of nanotechnological

devices and of biological systems [45], and hold for arbitrarily short times. The steady

state FRs have similar applications, but are valid only asymptotically in time, are harder

to derive in deterministic systems, and have been rigorously obtained only for the phase
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space contraction rate of uniformly hyperbolic dynamical systems [32, 33]. Nevertheless,

studying the mechanisms which underlie the validity of the steady state FRs for physically

interesting observables, one understands why they hold so much more generally [46]. In

particular, extending the ensemble derivations of the transient relations, one realizes that

time reversibility and the decay of the autocorrelation of the energy dissipation imply the

validity of a wide class of steady state FRs. Some decay of correlations is always needed

to reach a steady state, and to identify the statistics generated by the evolution of a single

system in real space, with that of an ensemble of systems in phase space. It turns out that

the form of mixing required by the steady state FR’s is minimal. This approach, which

justifies also the physical time scales within which the steady state FRs can be verified, is

similar to the stochastic approach, as it deals with the time evolution of probability measures

(determined by the Liouville Equation, instead of the Master Equation). Thus, it leads quite

easily to a number of results and relations, including the FRs.

Like the deterministic and stochastic descriptions are complementary, the mathematical

and physical approaches (summarized in Sections 4 and 5) contribute differently to our

understanding of nonequilibrium phenomena, and benefit from each other’s investigations,

even if they mostly proceed along distinct, parallel paths. For instance, the mathematical

approach is concerned with the identification of dynamical systems which allow a rigorous

derivation of some kind of FR, for one phase function. This approach may appear to be

physically irrelevant, because it may proceed independently of the nature of the dynamical

systems and of the phase functions under investigation. Indeed, the Anosov systems, whose

phase space contraction rate obeys one FR [32, 33], do not look per se physically revealing;

they may even be considered misleading, since they conceal the true reasons for a real

object to obey one FR. Nonetheless, intriguing physics questions have been raised by the

mathematics, like the (still open) question of which observables and which systems of physical

interest verify the modified FR –Eq.(42)– of Refs. [47, 48], see e.g. [49, 50].

On the other hand, the physical approach is concerned with understanding the

mechanisms for which a particular observable, of one physical system, does obey a given

FR. Thus, derivations of the FRs such as those of Refs. [46,51], which are meant to provide

this understanding, may look mathematically uninteresting, because they rely on physical

assumptions, which look impossible to prove. These assumptions amount to a sufficiently

fast decay of certain correlation functions, which makes perfect physical sense, but cannot

be mathematically established. Nevertheless, similarly to the arguments of [29, 34], they

introduce an intriguing mathematical problem: to construct one dynamical system with one

phase function, for which the assumptions can be rigorously assessed.

The mathematics and the physics still stand on very different grounds. For instance,

the mathematically trivial transient relations, like the transient Ω-FR, the Jarzynski and

the Crooks relations, are physically very interesting: they constitute a challenge for

experimentalists, and carry information on the physical relevance of current models of

nonequilibrium physics. Also, they are useful in the study of nanoscale biological systems,

in which no sufficiently general guiding principle has been so far firmly established.
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Khinchin’s viewpoint on the mathematical ergodic theory and the physical ergodic

hypothesis [52], provides a notable analogy for how the distinct approaches to the FRs

may prolifically interact. Sections 4 and 5 elaborate further on these issues.

2. Concise History of the Fluctuation Relation

In 1993, Evans, Cohen and Morriss published a seminal paper [29], on the fluctuations of

the dissipated power, or the entropy production rate σ, in macroscopic systems close to

equilibrium. In the model of [29], this observable, later obtained from the more general

Dissipation Function Ω [51], defined in Section 5, equals the phase space contraction rate

Λ [53], defined in Section 3. The authors of [29] proposed and tested the following relation:

Pτ (A)

Pτ (−A)
= eτA (1)

where A and −A are averages of the dissipated power, divided by kBT , on evolution segments

of duration τ , and Pτ is their steady state probability. In analogy with the periodic orbit

expansions [54, 55], Eq.(1) was obtained from the “Lyapunov weights” in the long τ limit.

Remarkably, Eq. (1), does not contain any adjustable parameter.

In 1994, Evans and Searles obtained the firsts of a series of relations similar to Eq.(1),

which we call transient Ω-FRs, because they concern Ω [30,31,50,51,56–58], for ensembles of

systems which evolve in time. The only requirement for the transient Ω-FRs to hold is the

reversibility of the microscopic dynamics. Because they describe the fluctuations of Ω, these

relations can be experimentally verified [59]. Evans and Searles argued that, in the long τ

limit, the transient Ω-FRs become the steady state Ω-FRs, as indicated by many tests, e.g.

Refs. [47, 50, 57, 60–67].

In 1995, Gallavotti and Cohen provided a mathematical justification of the Lyapunov

weights of Ref. [29], introducing the Chaotic Hypothesis [32, 33, 68, 69]:

Chaotic Hypothesis: A reversible many-particle system in a stationary state can be

regarded as a transitive Anosov system for the purpose of computing its macroscopic

properties.

The result was a genuine steady state FR, which we call Λ-FR, as it concerns the fluctuations

of the phase space contraction rate Λ. This quantity is proportional to the energy dissipation

rate of a subclass of Gaussian isoenergetic particle systems, which includes the model of [29].

A strong assumption as the Chaotic Hypothesis raises the question of which systems

of practical interest are “Anosov-like”, since almost none of them is actually Anosov. The

answer of Ref. [32, 33] is that the Anosov property, in analogy with the Ergodic property,

holds “in practice”. Difficulties with the physical interpretation of the Λ-FR emerge because

Λ, in general, does not have an obvious physical meaning, and because it is problematic,

when not impossible, to verify the Λ-FR close to equilibrium, even in numerical simulations

where Λ is an accessible quantity [36, 57, 60, 61, 63].
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In 1996, Gallavotti showed that the FR constitutes an extension to (even strongly)

nonequilibrium systems of the Green-Kubo and Onsager relations [34].

The Λ-FR applies to dissipative systems, i.e. to systems whose phase space volumes

on average contract. In [70], Eckmann, Pillet and Rey-Bellet studied the steady state of

an anharmonic chain coupled to infinite thermal baths, so that the overall system is non

dissipative. They showed that the relevant rate of entropy production is strictly positive

and obtained heuristically a suitable FR, which was later rigorously proven by Rey-Bellet

and Thomas [71].

Because fluctuations are not directly observable in macroscopic systems, but can be

observed in small systems or small parts of macroscopic systems, a few attempts have been

made to derive a local version of the FR [49,72–74]. This issue deserves further investigation.

The first stochastic FR motivated by Ref. [29] was obtained by Kurchan in 1998 [75].

The stochastic FRs of Lebowitz and Spohn [76], of Evans and Searles [77], and of Maes [78]

followed. The stochastic results of Van Zon and Cohen, [79, 80], are particularly interesting

for the theory of deterministic systems. The works by Bodineau and Derrida [81], and by

Bertini, De Sole, Gabrielli, Jona-Lasinio and Landim [82] also lead to stochastic FRs. Other

generalizations and extensions of the Λ-FR and Ω-FRs have been produced by different

authors, see e.g. Refs. [49,56,77,79,80,83–89]. It is impossible to mention all of them here.

The reader is therefore referred to the cited literature for more information.

The Jarzynski equality is a transient relation, which connects free energy differences

between two equilibrium states to non-equilibrium processes [90]. It was obtained

independently of the FRs in 1997. In 2000 Crooks derived an equality that combines the

transient FR and the Jarzynski equality in just one formula [91]. Both the Jarzynski and

the Crooks equalities concern evolving ensembles of nonequilibrium states, rather than single

nonequilibrium stationary states. Hatano and Sasa, in 2001, produced a relation of similar

kind [92], developing the works of Paniconi and Oono [93].

The picture would be completed by a review of the quantum versions of the FR,

but we cannot elaborate also on that. On the other hand, as is often the case for the

objects of statistical mechanics, quantum mechanics introduces technical difficulties which

must be treated with appropriate techniques, but do not modify the conceptual framework.

Therefore, the interested reader is referred to the existing literature, such as [85–89].

3. Dynamical models and equivalence of ensembles

Let a system constituted by N classical particles, in d dimensions, be described by:

ẋ = G(x) ; x = (q,p) ∈ M ⊂ IR2dN , (2)

where M is the phase space, and G is determined by the forces acting on the system and

by the particles interactions. A dynamical quantity of interest, in the following, is the phase

space contraction rate Λ, defined by

Λ = −div G . (3)

7



If the dynamics are discrete, xn+1 = F (xn), the phase space contraction per unit time is

given by

Λ = − log J , with J =

∣

∣

∣

∣

∂F

∂x

∣

∣

∣

∣

(4)

the Jacobian determinant of F . For continuous time, denote by Stx, t ∈ IR, the solution

of Eq.(2) with initial condition x. An observable quantity Ō is the time average of a phase

function O : M → IR

Ō(x) = lim
T→∞

1

T

∫ T

0

O(Stx)dt , x ∈ M (5)

Computing such a limit is exceedingly complicated, in general, but in equilibrium the problem

is commonly solved by the Ergodic Hypothesis, which states that

Ō(x) =
1

µ(M)

∫

M

O(y) dµ(y) ≡ 〈O〉µ (6)

for a suitable measure µ, and for µ-almost all x ∈ M. Similar relations hold for discrete

time evolutions.

Only a few systems of physical interest verify the strict mathematical statements of the

ergodic theory, and there is no hope that a many particles system will ever explore its phase

space as densely as suggested by Eq.(6). Nevertheless the Ergodic Hypothesis is successfully

applied in a very wide range of situations, because the variables of physical interest are but a

few, and tend to constants in the large N limit (cf. chapter I of [94] and Ref. [52]). This means

that the set of observables of interest is too small to probe true ergodicity, and that different,

necessarily partial models of the same system may be equivalent in describing its limited

set of physically interesting properties. Therefore, for an isolated system whose energy H

remains within a thin shell [E, E+∆E], it is justified to postulate that µ is the microcanonical

ensemble; for a closed system in contact with a heat bath at given temperature, the canonical

ensemble is postulated; and so on. A posteriori one checks whether the assumption is valid

or not, and finds that these classical ensembles are appropriate in very many situations:

they result valid for practical purposes. In the thermodynamic limit (N becomes large at

constant density and energy density) the different ensembles become equivalent, in the sense

that the averages of local observables tend to the same values.

3.1. The models

Nonequilibrium systems in steady states appear harder to treat than equilibrium phenomena,

thus one needs simple models, to assess various hypothesis. From this stand point,

Nonequilibrium Molecular Dynamics (NEMD) is one large reservoir of interesting models,

which have been successfully adopted in the study of the rheology of fluids, polymers

in porous media, defects in crystals, friction between surfaces, atomic clusters, biological

macromolecules, among a host of other phenomena [53, 95, 96]. They are not reliable if

quantum mechanical effects are important, if the interatomic forces are too complicated or

insufficiently known, if the number of particles needs to be too large, or the simulations have
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to be too long; but NEMD models are otherwise quite successful in computing transport

coefficients, and are a valid alternative to a number of experiments. In this paper, the

following models are used:

q̇i = pi/m + Ci · Fext ,

ṗi = Fint
i + Di · Fext − αthpi ,

(7)

where Fext is the external driving, coupled to the system via the constants Ci and Di,

Fint = −∇Φint is the conservative force due to the internal interactions among the particles,

with interaction potential Φint, and i = 1, ..., N . The term αthpi is deterministic and time

reversible, and is needed to add or remove energy from the system, in order to reach a steady

state [53]. It is not a physical force; it is a “synthetic” thermostat that substitutes the very

many, practically impossible to treat, degrees of freedom of a real thermostat.

For quantities not affected by how energy is removed from the system, the form of

αth is irrelevant, because susceptibilities of thermal processes are similar to susceptibilities

of mechanical processes [53]. Therefore, driving boundaries may be efficiently replaced by

fictitious external forces and constraints, for the purpose of computing transport coefficients,

and ad hoc models may be devised as equivalent mechanical representations of both

mechanical and thermal transport processes. The theory illustrated in Refs. [53, 96, 97]

guarantees the correctness of the results obtained via Eqs. (7).

The models which have been mostly used in the study of the FR are derived from Gauss’

principle of least constraint [98, 99]:

Gauss Principle (1829): Consider N point particles of mass mi, subjected to frictionless

bilateral constraints φ
(c)
i and to external forces Fi. Among all motions allowed by the

constraints, the natural one minimizes the “curvature”

C :=

N
∑

i=1

mi

(

q̈i −
Fi

mi

)2

=

N
∑

i=1

1

mi

(

φ
(c)
i

)2

.

The resulting equations of motion are Hamiltonian only for holonomic constraints. The

isokinetic (IK) constraint, which fixes the kinetic energy K =
∑

i p
2
i /2m, and the

isoenergetic (IE) constraint, which fixes the internal energy H0 = K + Φint, are not

holonomic. For a system in an external electric field E, with Ci = 0 and DiF
ext = ciE,

the IK and the IE constraints lead to

αth = αIK(x) ≡ 1

2K

(

J · E +
N
∑

i=1

pi

m
· Fint

i

)

preserves K , (8)

αth = αIE(x) ≡ 1

2K
J · E preserves H0 , (9)

where J =
∑N

i=1 ciq̇i, is the electric current and ci the electric charge of the i-th particle.

Another example of Eqs. (7) is a popular model for shear flows called SLLOD, given by

q̇i = pi/m + iγ yi , ṗi = Fint
i − iγ pyi − αthpi , (10)
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and

αth = αIK =

∑N
i=1 (Fint

i · pi − γpxipyi)
∑N

i=1 p2
i

, αth = αIE =
−γ
∑N

i=1 pxipyi
∑N

i=1 p2
i

, (11)

where γ is the shear rate in the y direction and i is the unitary vector in the x direction.

In the above examples, αIE is proportional to the power dissipation, divided by the

kinetic temperature, which, in macroscopic systems in local equilibrium, is the entropy

production rate. Because Λ = −div(q̇, ṗ) is in turn proportional to αIE, it can similarly be

related to the entropy production rate. However, this interpretation faces the difficultly that

any real nonequilibrium steady state can hardly be considered isoenergetic. Indeed, it is not

possible to control the redistribution among the internal degrees of freedom, of the energy

given to the system by the external drivings. Hence, the direct relation between phase space

contraction and energy dissipation appears accidental and of difficult interpretation.

Depending on the physical property to be described, other models are used in the

literature; like e.g. isobaric, isochoric, isoenthalpic, constant stress, etc. models. We mention

the popular Nosè-Hoover thermostat model [100–102], defined by:

q̇i = pi/m , ṗi = Fint
i − ζpi , ζ̇ =

1

τ 2

(

K(p)

K0

− 1

)

, (12)

where K0 is the chosen average of the kinetic energy K(p), and τ is a relaxation time. In the

small τ limit, Eqs. (12) approximate the IK dynamics, but are more realistic and generate

canonical distributions, in equilibrium, as appropriate for macroscopic isothermal systems.

3.2. Equivalence and non-equivalence of nonequilibrium ensembles

The NEMD models have been criticized for their non-Hamiltonian structure. However, a

Hamiltonian structure is not to be expected in systems in nonequilibrium steady states, when

the thermostat degrees of freedom are not included [103]. Indeed, let a complete N -particle

model of a system and its thermostat consist of Hamiltonian equations written as

ẋ =

(

ẋs

ẋr

)

= G(x) =

(

Gs(xs, xr)

Gr(xs, xr)

)

,
xs = (qi,pi)

Ns

i=1

xr = (qi,pi)
N
i=Ns+1

(13)

where the subscript s refers to the Ns particles of the thermostatted system, and the subscript

r refers to the Nr = N − Ns particles of the reservoir. If one is solely interested in the

dynamics of the system variables xs, then the projected dynamics will be dissipative as the

reservoirs, on average, remove energy from the driven system. This is schematically shown

in Figure 1. The projected dynamics is time reversal invariant, although it does not preserve

the volumes in its reduced space.‡ Moreover, if the time reversed evolution is allowed in

phase space, it is also allowed in the projected space.

Something similar happens in NEMD models, hence their non-Hamiltonian nature is

not a hindrance, by itself. However, the fact that they are not obtained through the ideal

‡ Differently, in systems of non-interacting particles, the projected dynamics remain Hamiltonian.
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Figure 1. Evolution of a phase space volume in the total, (xs, xr), and projected,

xs, phase spaces. In the (xs, xr) space, the dynamics is volume preserving. The

dynamics projected on xs expands and contracts the volumes. If the backward

evolution occurs in full phase space, so it does in the projected space.

projection procedure implies that they must be used cum grano salis: they represent only

certain features of nonequilibrium systems [83, 97, 104–107], under certain conditions.§
To the best of our knowledge, Refs. [110, 111] may be considered the first works on the

equivalence of nonequilibrium ensembles, based on NEMD models. For the equivalence of

various thermostatted responses, see Refs. [53, 97, 106, 112–114]. The papers [113, 114] show

that the phase space dimensionality loss, due to dissipation, is a bulk phenomenon even when

the thermostat acts only on the boundaries [115], confirming that boundary thermostats may

be replaced, in some circumstances, by synthetic bulk thermostats. References [107,116] also

deal with the equivalence of deterministic thermostats.

Nevertheless, the equality among the entropy production rate of systems subjected to

different thermostatting mechanisms, as well as the equality of this with the corresponding

phase space contraction rate, is a delicate question. For instance, consider the systems

described by Eqs.(7) with Ci = 0 and constant Fext, under IK and IE constraints. To obtain

the equivalence of their “entropy production rates”, one may proceed as follows [108]: first,

note that the ergodic hypothesis, together with Eq.(8), yields

Λ
IK

= (dN − 1)〈α
IK
〉 = (dN − 1)

[〈

∑N
i=1

pi

m
· Fint

i
∑N

i=1
p2

i

m

〉

+

〈

∑N
i=1

pi

m
Di · Fext

∑N
i=1

p2
i

m

〉]

(14)

for IK systems, where the bar indicates time average and the brackets phase space average.

The constraint removes one degree of freedom, thus the kinetic temperature T is defined by

(dN − 1)k
B
T ≡ 2K =

N
∑

i=1

p2
i

m
=

〈

N
∑

i=1

p2
i

m

〉

, (15)

§ For instance, large Ns and some form of mixing produced by particles interactions is necessary for the

fictitious forces not to dominate the behaviour of NEMD systems [40, 108]. Furthermore, not all kinds of

particles interactions suffice to mimic thermodynamic like behaviours [109].
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(K is constant). Considering that the interaction forces do not do any net work,

N
∑

i=1

pi

m
· Fint

i (q) = − d

dt
Φint(q) , so that −

〈

d

dt
Φint

〉

− d

dt

〈

Φint
〉

= 0 (16)

and dividing by the volume V of the system, to compare dynamical averages with

macroscopic quantities, one obtains:

σIK ≡ 〈Λ
IK
〉

V
=

〈

∑N
i=1

pi

mV
Di · Fext

〉

k
B
T

=

〈

∑N
i=1

pi

mV
Di

〉

k
B
T

· Fext . (17)

Noting that I =
〈

∑N
i=1

pi

m
Di

〉

/V is the particle current density, one gets:

σIK =
I · Fext

k
B
T

, (18)

where the right hand side of Eq.(18) is formally the expression for the entropy production

rate, σ, in Irreversible Thermodynamics. In the IE case, there is no constraint on the

momenta, hence the kinetic temperature is defined by:
〈

N
∑

i=1

p2
i

m

〉

= dNk
B
T , (19)

while Eq.(9) yields:

σIE ≡ 〈Λ
IE
〉

V
= (dN − 1)

〈

∑N
i=1

pi

mV
Di · Fext

∑N
i=1

p2
i

m

〉

= (dN − 1)

〈

∑N
i=1

pi

mV
Di

∑N
i=1

p2
i

m

〉

· Fext . (20)

For large N , if one argues that the average of the last ratio of (20) can be replaced by the

ratio of the averages –something not obvious in nonequilibrium systems– one obtains

σIE =
I · Fext

k
B
T

, (21)

up to terms of order O(1/N). Therefore, the equality of the entropy production rates, as

well as their equivalence with the corresponding phase space contraction rates, for systems

with different thermostatting mechanisms, cannot be taken for granted, in general, although

for properly chosen initial conditions, 〈ΛIE〉 may coincide with 〈ΛIK〉 in the large N limit.

We remark that, without a large number N of interacting particles, one could not speak at

all of entropy production. Indeed, irreversible thermodynamics requires a local equilibrium,

in which the extensive properties are proportional to N and depend further only on the

temperature and on the number density n = N/V . But for large N , one could have

σIE = σIK + O(1/N), in which case one could speak of equivalence of nonequilibrium

ensembles in the thermodynamic limit (N, V → ∞, while density and energy density tend

to a constant). This idea has been further developed by Ruelle in [117].

The proper choice of the initial conditions plays a role also in the equivalence principle

for hydrodynamics, formulated by Gallavotti [83], which concerns evolution equations like

u̇ + (u · ∇)u = −1

ρ
∇p + g + α∆u , ∇ · u = 0 , (22)

12



where, u is the fluid velocity field, ρ the fluid density, p the pressure, and g is a constant

force. If α = ν is constant, Eq.(22) is the Navier-Stokes (NS) equation with viscosity ν.

Gallavotti considered the case with

α(u, ω, f) =

∫

[ω · f + ω · (ω · ∇)u] dx
∫

(∇× ω)2 dx
, (23)

where ω = ∇×u and f = ∇×g, and called Eq.(22) the Gauss-Navier-Stokes (GNS) equation.

This equation is time reversible, and has constant enstrophy Q =
∫

ω2dx. In periodic

boundary conditions, expanding u in Fourier modes, and truncating, yields a dynamical

system, with a certain phase space contraction rate. Gallavotti then stated the:

Equivalence Principle. The stationary probability distributions of the NS and of the GNS

equations are equivalent in the limit of large Reynolds number, provided Q and ν are so

related that the constant phase space contraction rate of the NS equation and the average of

the fluctuating one of the GNS equation are equal.

In analogy with equilibrium statistical mechanics, this principle is supposed to hold for

local variables, and the large Reynolds number is invoked for the fluctuations of α to be fast

on the observation time scales. Then, if the average of α equals ν, something that depends

on the initial state, the behaviour of the NS and the GNS evolutions should be the same.

In Refs. [49, 84], the Lyapunov spectra of the NS system, expressed by a small number

(up to 168) of Fourier modes, were indeed found to coincide with those of the GNS under

different constraints. This shows that the Equivalence Principle describes certain dynamical

systems related to equations (22, 23), but it does not answer the question of its relevance

for turbulence, which requires simulations with substantially larger numbers of modes. This

is still quite a demanding task, in computational terms. Therefore, for the cases of Ref. [49]

in which the principle was best verified, we have increased by only one order of magnitude

the number of degrees of freedom, passing from 24 to 440 simulated modes. The result is

reported in Fig. 2, where the spectra corresponding to the cases with equal estimated average

phase space contraction rates are represented by the thick lines. The spectrum of the NS case

has lower uncertainty, since its dynamics fluctuate less. Because there is some uncertainty in

the calculation of 〈α〉 in the GNS system, we show, as a control test, two additional spectra

for NS systems, with quite smaller and quite bigger ν than the estimated 〈α〉. The NS

spectra shift, decreasing with Λ (which is proportional to ν), and in no case do they overlap

with the GNS spectrum. Similarly to the case of thermostatted particle systems, discussed

above, this indicates that the Equivalence Principle poses delicate questions. In particular,

its applicability to models of turbulence deserves further investigation.

4. The mathematical theory

The mathematical approach of Gallavotti and Cohen, [32, 33], is meant to identify the

context within which a relation like Eq.(1) can be rigorously derived, i.e. to place on solid

mathematical grounds the Lyapunov weights used in [29]. This approach assumes that
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Figure 2. Lyapunov spectrum of the constant energy GNS system, approximated by 440

Fourier modes with 〈α〉 = 0.0105± 0.0006 (plus symbols), and corresponding NS spectrum

with ν = 0.011 (cross symbols). For clarity, only one third of the symbols are drawn and

the shaded regions around them correspond to the errors, which are estimated as the range

between the highest and lowest computed value, in the last two thirds of the run. The upper

and lower thin lines concern the NS system with ν = 0.007 (solid) and ν = 0.015 (dashed),

which are well below and above 〈α〉 (error bars have the same size as for ν = 0.011).

dissipative, reversible, transitive Anosov diffeomorphisms are idealizations of nonequilibrium

particle systems, hence that the statistical properties of Anosov and particle systems have

some similarity. That systems evolve with discrete or continuous time, was considered a side

issue in [32, 33], as apparently confirmed by Gentile’s work on Anosov flows [118].

We now sketch the derivation of the Λ-FR of [32,33]. Take a smooth compact manifold

M, with a Riemann metric, and a diffeomorphism on it, S : M → M, with Hölder

continuous first derivatives. The dynamical system (M, S) is Anosov if M is uniformly

hyperbolic for S: i.e. there is a splitting of the tangent bundle TM = V − ⊕ V +, such that

x 7→ V ±
x is Hölder continuous, TS V − ⊂ V −, TS V + = V +, and

‖TSnv‖ ≤ Cθ−n for v ∈ V − (24)

‖TS−nv‖ ≤ Cθ−n for v ∈ V + (25)

for all n ≥ 0 and for given constants C > 0, θ > 1. The dynamics is transitive if the stable

and unstable manifolds V ±
x are dense in M for all x ∈ M. The following holds [119]:

Theorem (Sinai, 1968). Every transitive Anosov diffeomorphism has a Markov partition.

A Markov partition is a subdivision of M in cells whose interiors are disjoint from each other,

and whose boundaries are invariant sets constructed using the stable and unstable manifolds.

This allows the interior of a cell to be mapped by S in the interior of other cells, and not
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across two cells, which would include a piece of their boundary. Furthermore, partitions

with arbitrarily small cells can be constructed. Now, let J be the Jacobian determinant of

S, Λ(x) = − log J(x), and consider the dimensionless phase space contraction rate averaged

on a trajectory segment wx,τ of middle point x ∈ M, and duration τ :

eτ (x) =
1

τ〈Λ〉

τ/2−1
∑

−τ/2

Λ(Stx) (26)

Let Ju be the Jacobian determinant of S restricted to V +. If the system is Anosov,

probability weights of the kind conjectured in [29] can be assigned to the cells of a finite

Markov partition, and the probability that eτ (x) falls in the interval Bp,ǫ = (p − ǫ, p + ǫ)

coincides, in the limit of fine Markov partitions and long τ ’s, with the sum of the weights

wx,τ = Π
τ/2−1
k=−τ/2J

u(Skx)−1 of the cells containing the points x with eτ (x) ∈ Bp,ǫ. Then, if

πτ (Bp,ǫ) is the corresponding probability, one can write

πτ (Bp,ǫ) ≈
1

M

∑

x,eτ (x)∈Bp,ǫ

wx,τ (27)

where M is a normalization constant. If the support of the physical measure is M, which

is the case if the dissipation is not exceedingly high [120], time reversibility guarantees that

the support of πτ is symmetric around 0, and one can consider the ratio

πτ (Bp,ǫ)

πτ (B−p,ǫ)
≈
∑

x,eτ (x)∈Bp,ǫ
wx,τ

∑

x,eτ (x)∈B−p,ǫ
wx,τ

, (28)

where each x in the numerator has a counterpart in the denominator. Denoting by i the

involution which replaces the initial condition of one trajectory with the initial condition of

the reversed trajectory,‖ time reversibility yields:

Λ(x) = −Λ(ix) , wix,τ = w−1
x,τ and

wix,τ

wx,τ
= exp(τ〈Λ〉p) (29)

if eτ (x) = p. Taking small ǫ in Bp,ǫ, the division of each term in the numerator of (28) by

its counterpart in the denominator approximately equals eτ〈Λ〉p, which then equals the ratio

in (28). In the limit of small ǫ, infinitely fine Markov partition and large τ one obtains:

Theorem (Gallavotti and Cohen, 1995). Let (M, S) be dissipative, reversible and

chaotic. Then,

πτ (Bp,ǫ)

πτ (B−p,ǫ)
= eτ〈Λ〉p . (30)

with an error in the argument of the exponential which can be estimated to be p, τ

independent.

Here, dissipative means 〈Λ〉 > 0; reversible means iSn = S−ni; and chaotic means that S

can be regarded as a transitive Anosov system for the purpose of computing its statistical

‖ For instance, i may be the reversal of momenta, but is more complicated for SLLOD.
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properties (Chaotic Hypothesis, Sec. 2). If Λ can be identified with a physical observable,

the Λ-FR is a statement on the physics of nonequilibrium systems.

A quite informative derivation of the Λ-FR is the one based on orbital measures, given

by Ruelle in Ref. [121], which we now summarize. Take a transitive, reversible Anosov

diffeomorphism described above, and a Hölder continuous function A : M → IR; there is a

unique ergodic measure µ maximizing h(µ)+
∫

A(x)µ(dx), where h is the Kolmogorov-Sinai

entropy and µ is called the Gibbs state for A. Sinai proved that the invariant measure

which gives the forward time statistics is the Gibbs state of A = − log Ju. Denoting by

FixSn = {x ∈ M : Snx = x}, the set of periodic points of period n and by φ a continuous

function, the probability measure µn defined by the averages

µn(φ) =

∑

FixSn φ(x)Πn−1
k=0J

u(Skx)−1

∑

FixSn Πn−1
k=0J

u(Skx)−1
(31)

is invariant for S and tends weakly to µ for n → ∞: µn(φ) → µ(φ) for all φ. Moreover, by

definition µ(eτ ) = 1 and, because of time reversibility, one has

J(iSx) = J(x)−1 , eτ ◦ i ◦ Sτ = −eτ , and Js(iSx) = Ju(x)−1 (32)

since i exchanges the stable and unstable directions. To prove the Λ-FR , observe first that,

given [p, q] ⊂ IR, there are a, b > 0 for which

1

τ〈Λ〉 log
µ(x : eτ (x) ∈ [p, q])

µ(x : eτ (x) ∈ [−q − a/τ,−p + a/τ ])
≤ q +

b

τ
. (33)

This rather sophisticated result was obtained by Ruelle relying heavily on properties of

Anosov diffeomorphisms, hence it should hardly be generic (see also [122]). Indeed, Eq.(33)

relies on Bowen’s shadowing, topologically mixing, the specification property, a property

of sums for Hölder continuous functions, the expansiveness of the dynamics, the continuity

of the splitting of the tangent bundle, and the expression of µ in terms of periodic orbits

(c.f., Sections 3.1 to 3.8 of Ref. [121]). Furthermore, Ruelle uses a large deviation result

for one dimensional systems with short range interactions, considering A = − log Ju and

B = −(1/〈Λ〉) logJ , so that (1/τ)
∑τ−1

k=0 B(Skx) = eτ (x). This result states that there is

a real analytic and strictly concave function η in the interval (−p∗, p∗) such that, for every

other interval I which intersects (−p∗, p∗), the following holds

lim
τ→∞

1

τ〈Λ〉 log µ ({x : eτ (x) ∈ I}) =
1

〈Λ〉 sup
u∈I∩(−p∗,p∗)

η(u) (34)

where the Gibbs state of A, µ, and time reversibility have been used. Combining this with

(33), one obtains

lim
τ→∞

1

τ〈Λ〉 log
µ({x : eτ (x) ∈ (p − δ, p + δ)})

µ({x : eτ (x) ∈ (−p − δ,−p + δ)}) ≤ p + δ (35)

for δ > 0 and |p| < p∗. Taking this result, and the one corresponding to −p, the Gallavotti-

Cohen fluctuation theorem is finally obtained.

Theorem (Ruelle, 1999). Let S be a C1+α, α > 0, Anosov diffeomorphism of the compact

connected manifold M, and let µ be the corresponding SRB measure. Assume reversibility,
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with involution i, and consider the dimensionless phase space contraction rate eτ with respect

to an i-invariant Riemann metric on M. Then, there exists p∗ > 0 such that the Λ-FR

p − δ ≤ lim
τ→∞

1

τ〈Λ〉 log
µ({x : eτ (x) ∈ (p − δ, p + δ)})

µ({x : eτ (x) ∈ (−p − δ,−p + δ)}) ≤ p + δ (36)

holds if |p| < p∗ and δ > 0.

4.1. Consequences of the Λ-FR

Taking Λ as the entropy production rate, Gallavotti used the Λ-FR to obtain Green-

Kubo like and Onsager like relations, in the limit of small dissipation [34]. This way,

the Λ-FR appears as an extension of such relations to nonequilibrium systems. Gallavotti

assumes that the (reversibly thermostatted, continuous time) system is driven by the s fields

F = (F1, F2, ..., Fs), that Λ vanishes for F = 0, that the phase space is bounded,¶ and that

Λ(x) =

s
∑

i=1

FiJ
0
i (x) + O(F 2) , (37)

where J0
i are the currents close to equilibrium, i.e., are linear in F . Then, the fast decay of

the Λ-autocorrelation function, implied by the Anosov property, leads to

ζ(p) = − lim
τ→∞

1

τ
log πτ (p) =

〈Λ〉2
2C2

(p − 1)2 + O((p − 1)3F 3) (38)

where C2 =
∫∞

−∞
〈Λ(St·)Λ(·)〉Tdt, and 〈.〉T denotes the cumulant. Thus, using the Λ-FR, one

obtains 〈Λ〉 = C2/2+O(F 3). Arbitrarily far from equilibrium, Gallavotti defines the currents

as Ji(x) = ∂Fi
Λ(x), and the transport coefficients as Lij = ∂Fj

〈Ji〉|F=0. The derivatives with

respect to the parameters F require a property of differentiability of SRB measures, which

has been proven by Ruelle in Ref. [28]. Assuming this property, the validity of the Λ-FR

and using time reversibility, one can write ∂Fj
〈J0

i 〉|F=0 = ∂Fj
〈Ji〉|F=0, and

1

2

∫ ∞

−∞

〈Λ(Stx)Λ(x)〉T dt = 〈Λ〉 =
1

2

s
∑

i,j=1

(∂Fj
〈Ji〉 + ∂Fi

〈Jj〉)|F=0FiFj , (39)

in the limit of small F . Then, if s = 1, one recovers the Green-Kubo relations for the unique

transport coefficient L11. To obtain the Onsager symmetry Lij = Lji, Gallavotti extends the

Λ-FR in order to consider the joint distribution of Λ and its derivatives. Introducing the

dimensionless current q in a trajectory segment

q(x) =
1

Fj〈∂Fj
Λ〉τ

∫ τ/2

−τ/2

Fj∂Fj
Λ(Stx)dt (40)

¶ Generic reversible thermostats (Ref. [34] mentions Gaussian isokinetic, Gaussian isoenergetic and Nosé-

Hoover thermostats) seem to contrast with the requirement of vanishing Λ at equilibrium, and with the

boundedness of the phase space. In fact, difficulties occur in this approach, if it is applied to NEMD models

(cf. Ref. [36] and Section 4.3 below). However, Ref. [34] is not to be interpreted as referring to concrete

particle systems; it refers to Λ for hypothetical Anosov systems, provided they exist [69].
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and the joint distribution πτ (p, q), with corresponding large deviation functional ζ(p, q) =

− limτ→∞
1
τ

log πτ (p, q), one obtains a relation like the Λ-FR :

lim
τ→∞

1

τ〈Λ〉p log
πτ (p, q)

πτ (−p,−q)
= 1 . (41)

This makes the difference (ζ(p, q) − ζ(−p,−q)) independent of q, and leads to the desired

result, Lij = Lji, in the limit of small F . This work inspired Refs. [35, 104, 105].

The above derivations are valid if the dynamics is transitive, i.e. if the dissipation is

not too high. It is very hard to violate this condition in a particle system [120]. However,

this possibility has been considered in [48], where a stronger hypothesis than the Chaotic

Hypothesis has been introduced, under the assumption that the Lyapunov exponents come

in pairs that sum to a constant c < 0 [123–125], except for some pair of vanishing exponents.

In Ref. [47], Bonetto et al. had conjectured that the Λ-FR should generalize to the form

log
πτ (Bp,ǫ)

πτ (B−p,ǫ)
= τ〈Λr〉

D − M

D
p , (42)

apart from small errors. To understand the meaning of (D − M)/D ≤ 1 and Λr, consider

transitive dynamics, and neglect the trivial Lyapunov exponents. Half of the remaining

exponents are positive (λ+
i ), half are negative (λ−

i ), and can be arranged in D pairs {λ+
i , λ−

i },
with ci = λ+

i + λ−
i . According to the authors of [47], as the dissipation grows, the dynamics

ceases to be transitive, some of the positive exponents become negative and lower dimensional

attracting and repelling sets are generated. If conjugate pairing holds, i.e. if ci = c for all

i = 1, ..., D, it could happen that the volume contraction along each pair of directions

corresponding to each pair of exponents is proportional to c, and that the dimensionality of

the attracting manifold Mr is that of M minus the number M of pairs with two negative

exponents. Then, Λ equals (D−M)/D times the contraction rate restricted to the attractor,

Λr and, if the attractor is invariant with respect to some kind of time reversal operation, the

FR holds for Λr, while Λ must obey Eq.(42).+

Eq.(42) is hard to test in particle systems, because fluctuations become less and less

frequent as the dissipation grows. In Ref. [47], the case with (D − M)/D = 18/19 was not

distinguishable from 1, given the achieved resolution, while the case with (D−M)/D = 17/19

could not be tested; similar difficulties were met in [61]. An indirect confirmation of

Eq.(42), based however on new scaling assumptions, is given in [126], where a procedure

is given to estimate finite τ corrections to the steady state Λ-FR. Differently, Ref. [50]

finds that the standard Λ-FR holds for a simple oscillator model, even in the presence of

pairs of negative Lyapunov exponents. The theory of Refs. [47, 48] has been generalized to

hydrodynamic models, where conjugate pairing does not hold, but fluctuations persist even

with a substantial excess of negative Lyapunov exponents [49,83,84]. The factor (D−M)/D

was there replaced by

c =

∑∗(λk + λ2K−1−k)
∑

(λk + λ2K−1−k)
, (43)

+ The required time reversal operation is one involution i, obeying iSt = S−ti, that leaves the attractor

invariant.
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where the 2K −2 nontrivial Lyapunov exponents are given in decreasing order (λ1 ≥ λ2... ≥
λ2K−2), and

∑∗ means summation over the pairs with one positive exponent, while
∑

is the

summation over all the pairs. The Λ-FR with slope c defined by (43) was verified in GNS

systems truncated to few tens of modes [49].

4.2. Local fluctuations

In Ref. [49] a local version of the Λ-FR, first proposed in [127], was also tested. One reason for

developing local FRs is that global fluctuations are not observable in macroscopic systems.

The local Λ-FR of Ref. [127] concerns an infinite chain of weakly interacting chaotic maps.

Let V0 be a finite region of the chain centered at the origin, T0 > 0 be a time interval, and

define

〈Λ〉 ≡ lim
V0,T0→∞

1

|V0|T0

T0−1
∑

j=0

ΛV0(S
jx) , p =

1

〈Λ〉|V |

T0/2
∑

j=−T0/2

ΛV0(S
jx) , (44)

where V = V0 × T0, and ΛV0(x) is the contribution to Λ given by V0. Then, one obtains:

πV (p) = eζ(p)|V |+O(|∂V |) , with
ζ(p) − ζ(−p)

p〈Λ〉 = 1 and |p| < p∗ , (45)

where |∂V | is the size of the boundary of V , p∗ ≥ 1 and ζ is analytic in p. The contribution

of the boundary term |∂V | decreases with growing V , leading to the Λ-FR in the limit of

large (compared to microscopic scales) volume V0 and long times T0.

The problem of local fluctuations, naturally leads to the possibility of extending

Onsager-Machlup theory to nonequilibrium systems. This has been done by Gallavotti [128],

under the assumption that the entropy production rate is proportional to Λ. The Onsager-

Machlup theory [13, 14] concerns the paths of small fluctuations around equilibrium states,

and leads to a derivation of the hydrodynamic equations for the corresponding observables,

via the maximization of the probability of the relaxation paths, in the large system limit

[13,14]. Gallavotti also considers the probability of temporal paths t 7→ ϕ(t), for observables

O which are either even or odd with respect to the time reversal operation, and have vanishing

mean. The fluctuation ϕ, is assumed to be smooth and to vanish for large |t|, but no bound

is placed on its size. One may then consider the probability that O(Stx) stays close to ϕ, in

the time interval [−τ/2, τ/2], and, in the large τ limit, one may consider the large deviation

function for Λ to take values close to p and for O to stay close to ϕ, ζ(p, ϕ) say.

The result is that the path ϕ(t) and its time reversal iϕ(t) = ±ϕ(−t) (where + holds

for even and − for odd ϕ) are followed with equal probability if the first path is conditioned

to an average Λ equal to p and the second path to an average Λ equal to −p. Indeed, for

time reversal invariant, dissipative, transitive Anosov systems, Gallavotti obtains

ζ(−p, iϕ) − ζ(p, ϕ)

p〈Λ〉 = 1 , |p| ≤ p∗ , p∗ ≥ 1 , (46)

which means that it suffices to make Λ behave strangely (i.e. to take values different from

〈Λ〉), to see all observables behave equally strangely. The further developments of Ref. [129]

excluded a direct connection of these results with the theory of Ref. [82].
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4.3. Applicability of the Chaotic Hypothesis

The question arises of whether any system of physical interest verifies the Chaotic Hypothesis.

As the FR implied by the Chaotic Hypothesis concerns the physically non-obvious Λ, this

question has been little investigated. Some of the papers in which Λ was considered suggested

that the steady state Λ-FR holds for reversible dynamical systems with one or more positive

Lyapunov exponents [34], but also for some systems without positive exponents [130, 131].

That Λ should be bounded and that the Λ-FR should hold only for |p| ≤ p∗, for some p∗ > 0,

was not thought to have observable consequences, at first.

Later it was realized that the Λ-FR is hard, if not impossible, to verify in non-isoenergetic

systems in steady states close to equilibrium [57, 60, 63], despite the “higher chaos” of

equilibrium states. To explain these facts, Ref. [36] observes that the Λ-FR implies an

asymmetry between positive and negative fluctuations, which is not present in equilibrium,

hence that the Λ-FR for non-normalized Λ may hold only if its domain tends to {0} when

the steady state tends to an equilibrium state. In the Gaussian isokinetic case, however,

Λ is the sum of a dissipative term, Ω, and a conservative interaction term, which may be

singular, (cf. Eqs. 8,11). The dissipative term obeys the FR, while the conservative term

does not, but its averages over long time intervals are small, and become negligible with

respect to those of Ω as the intervals grow [36, 60]. Thus, in the long time limit the Λ-FR

may hold as a consequence of the validity of the Ω-FR, but its convergence times diverge as

the steady states approach equilibrium states. Moreover, the convergence of the domain of

the Λ-FR to {0} implies that the Λ-FR eventually describes only trivial fluctuations. This

causes some difficulty in the derivation of the Green-Kubo relations from the Λ-FR, which

requires the equilibrium limit. On the one hand, the averaging times have to be long for

the Central Limit and the Λ-FR to apply, but not so long that Ω = 0 is in the tails of the

Ω-probability distribution function, which are not described by the Central Limit Theorem.

If the averaging time required by the Λ-FR tends to infinity, this compromise may not be

possible. Singularities of Λ, in turn, make dubious the existence of the cumulants used in [34]

to derive the Green-Kubo relations. Therefore, the physical applications of the Λ-FR and of

the Chaotic Hypothesis appear problematic from this point of view.

References [36, 132] suggested that, in IK systems, Λ is better suited to describe heat

fluxes than entropy productions, hence that the Λ-FR has to be modified like the heat FR of

Van Zon and Cohen for stochastic systems [133]. Indeed, for continuous time systems with

singular Λ, terms of the form [Φint(Sτx)−Φint(x)]/τ , with unbounded interaction potential

Φint, affect the large deviations of Λ, if the probability distribution of Φint has exponential or

larger tails [134]. The solution of Ref. [134] consists in assuming that chaos due to uniform

hyperbolicity may play the same role as the white noise in Ref. [79, 80]. In the Gaussian

isokinetic, or Nosé-Hoover isothermal cases, one has

q̇i = pi ṗi = E − ∂qi
Φint − αpi Λ = Λ(0) − βV̇ (47)

where V is related to Φint, and has an equilibrium (E = 0) distribution with exponentially

decaying tails, while Λ(0) has Gaussian tails. It is then assumed that the tails have same
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properties when E 6= 0. Then, the average of Λ in a time τ takes the form

Λ0,τ (x) =
1

τ

∫ τ

0

Λ(Stx)dt = Λ(0)
0,τ (x) +

β

τ
[V (Sτx) − V (x)] , (48)

with Λ(0)
0,τ (x) =

1

τ

∫ τ

0

Λ(0)(Stx)dt , (49)

and for large τ , in some cases, one may assume that Λ(0), Vf = V ◦ Sτ and Vi = V are

independently distributed. This ultimately leads to [134]

lim
τ→∞

1

τ
log

∫ p∗〈Λ〉

−p∗〈Λ〉

dΛ(0)

∫ ∞

0

dVi

∫ ∞

0

dVfe
τ ζ̃0(Λ(0))−β(Vi+Vf )δ[τ(Λ − Λ(0)) + β(Vi − Vf)] (50)

= lim
τ→∞

1

τ
log

∫ p∗〈Λ〉

−p∗〈Λ〉

dΛ(0)eτ ζ̃0(Λ(0))−τ |Λ−Λ(0)| , (51)

where ζ̃0(Λ
(0)) is the rate function of Λ(0). Then, for the rate function of Λ one obtains

ζ̃(Λ) = max
Λ(0)∈[−p∗〈Λ〉,p∗〈Λ〉]

[

ζ̃0(Λ
(0)) − |Λ − Λ(0)|

]

=











ζ̃0(Λ−) − Λ− + Λ ; Λ < Λ−

ζ̃0(Λ) ; Λ− ≤ Λ ≤ Λ+

ζ̃0(Λ+) + Λ+ − Λ ; Λ > Λ+

(52)

where ζ̃ ′
0(Λ±) = ∓1. If the FR holds for Λ(0), with |Λ(0)| ≤ p∗〈Λ〉, the Λ(0)-FR, one obtains

ζ̃(Λ) − ζ̃(−Λ) =











Λ ; 0 ≤ Λ < 〈Λ〉
ζ̃0(Λ) + Λ ; 〈Λ〉 ≤ Λ ≤ Λ+

ζ̃0(Λ+) + Λ+ ; Λ > Λ+

. (53)

A relation similar to the heat FR of Van Zon and Cohen is thus obtained for Λ. The

statement that the Λ(0)-FR holds with |p| ≤ p∗, if Λ(0) is bounded or decays faster than

exponential is justified adopting Gentile’s approach for Anosov flows, which reduces the flow

to a Poincaré map [118], and assuming the Chaotic Hypothesis for the resulting map. In

particular, the dynamics may be restricted to a level surface V = V̄ , with V̄ < ∞, so that

the volume contraction rate, Λ(0), is bounded and the terms (Vf − Vi) vanish.

This scenario is supported by Gilbert’s Ref. [67], for a one particle system. However,

all other particle systems have been found to satisfy the original Λ-FR, suggesting that the

singularities in the potential term may not be sufficient for the validity of the heat FR of

Van Zon and Cohen [135]. For stochastic systems, the first indication that singularities may

invalidate the Λ-FR is found in [136]; Ref. [137] suggests that the Van Zon-Cohen FR may

have quite wide applicability, see also [138], while [139] shows some counterexample. The

phenomenology is quite complex, as Visco explains [140], hence it is not possible at present

to draw the limits of validity of the theory of [134].

The above shows that the Λ-FR rests on strong assumptions, which are hardly met by

systems of physical interest, and which have no simple physical interpretation. At the same

time, the physically more obvious steady state Ω-FR is quite generally verified, and does not

incur in the difficulties which affect the Λ-FR. Thus the mathematical theory raises intriguing

questions for the physical theory: does the Ω-FR hold independently of the Λ-FR? Which
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are the physical mechanisms underlying the validity of the Ω-FR, when it holds? It would

also be interesting to test Eqs.(41,46) in NEMD models, as well as in actual experiments,

and it is desirable that Eqs.(42,45,53) be further investigated.

5. The physical mechanisms

In 1994, Evans and Searles obtained the first of a series of relations similar to Eq.(1), for the

Dissipation Function Ω, which, in nonequilibrium states close to equilibrium can be identified

with the entropy production rate, σ = JV F ext/k
B
T . Here, J is the (intensive) flux due to

the thermodynamic force F ext, V is the volume and T the kinetic temperature [30,31]. That

relation, called transient Ω-FR, is obtained under virtually no hypothesis, except for time

reversibility; it is transient because it concerns non-invariant ensembles of systems, instead

of the steady state. The transient Ω-FR has been verified experimentally [64,65,141], and its

conjectured extension to steady states has been validated by many tests. The Evans-Searles

approach to the steady state Ω-FR is based on the belief that the complete knowledge of

the invariant measure implied by the Chaotic Hypothesis is not needed to understand a few

properties of the steady state. Like thermodynamic relations are widely applicable because

do not depend on the details of the microscopic dynamics, the observed wide applicability of

the steady state Ω-FR suggests, indeed, that it cannot depend on subtle dynamical features,

like approximate hyperbolicity. It is therefore necessary to understand the mechanisms

underlying the validity of the steady state Ω-FR in systems of physical interest.

Following Ref. [46], let M be the phase space of the system at hand, and Sτ : M → M,

a reversible evolution with time reversal map i. Take a probability measure dµ(Γ) = f(Γ)dΓ

on M, and let the observable O : M → IR be odd with respect to time reversal i.e.,

O(iΓ) = −O(Γ). Denote its time averages by

Ot0,t0+τ (Γ) ≡ 1

τ
Ot0,t0+τ (Γ) =

1

τ

∫ t0+τ

t0

O(SsΓ)ds . (54)

For a density f even with respect to time reversal, i.e. satisfying f(iΓ) = f(Γ), define the

Dissipation Function as

Ω(Γ) = − d

dΓ
log f

∣

∣

∣

∣

Γ

· Γ̇ + Λ(Γ) , so that Ωt0,t0+τ (Γ) =
1

τ

[

ln
f(St0Γ)

f(St0+τΓ)
+ Λt0,t0+τ

]

(55)

Note that, for a compact phase space, the uniform density f(Γ) = 1/|M| implies Ω = Λ.

However, Ω equals the dissipated power, divided by the kinetic temperature, in bulk

thermostatted systems, like those of Eqs.(7), only if f is the equilibrium probability density

for the given system [46], and only in special circumstances does this imply f(Γ) = 1/|M|.
That the logarithmic term exists in (55) has been called ergodic consistency [51], a condition

met if f > 0 in all regions visited by the trajectories StΓ.

For δ > 0, let A+
δ = (A − δ, A + δ) and A−

δ = (−A − δ,−A + δ), and let E(O ∈ (a, b))

be the set of points Γ such that O(Γ) ∈ (a, b). Then, E(Ω0,τ ∈ A−
δ ) = iSτE(Ω0,τ ∈ A+

δ ), and
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the transformation Γ = iSτX has Jacobian
∣

∣

∣

∣

dΓ

dX

∣

∣

∣

∣

= exp

(

−
∫ τ

0

Λ(SsX)ds

)

= e−Λ0,τ (X) , (56)

Then, introducing 〈O〉Ω0,τ∈A+
δ

as the average of O according to µ, under the condition that

Ω0,τ ∈ A+
δ , and taking the dissipation function as the observable, O0,τ = Ω0,τ , one may write

µ(E(Ω0,τ ∈ A+
δ ))

µ(E(Ω0,τ ∈ A−
δ ))

=

∫

E(Ω0,τ∈A+
δ

)
f(Γ)dΓ

∫

E(Ω0,τ∈A+
δ

)
f(SτX)e−Λ0,τ (X)dX

=

∫

E(Ω0,τ∈A+
δ

)
f(Γ)dΓ

∫

E(Ω0,τ∈A+
δ

)
e−Ω0,τ (X)f(X)dX

=
〈

e−Ω0,τ
〉−1

Ω0,τ∈A+
δ

, (57)

i.e.,

µ(E(Ω0,τ ∈ A+
δ ))

µ(E(Ω0,τ ∈ A−
δ ))

= e[A+ǫ(δ,A,τ)]τ , (58)

with ǫ an error term due to the finiteness of δ, such that |ǫ(δ, A, τ)| ≤ δ. We call (58) the

transient Ω-FR. The transient Ω-FR refers to the non-invariant probability measure µ of

density f ; it is remarkable that time reversibility is the only ingredient of its derivation. To

obtain the steady state Ω-FR, let averaging begin at time t0 and consider

µ(E(Ot0,t0+τ ∈ A+
δ ))

µ(E(Ot0,t0+τ ∈ A−
δ ))

. (59)

Taking t = τ + 2t0, the transformation Γ = iStW and some algebra yield

µ(E(Ot0,t0+τ ∈ A+
δ ))

µ(E(Ot0,t0+τ ∈ A−
δ ))

= 〈exp (−Ω0,t)〉−1

Ot0,t0+τ∈A+
δ

, (60)

and for Ot0,t0+τ = Ωt0,t0+τ

µ(E(Ωt0,t0+τ ∈ A+
δ ))

µ(E(Ωt0,t0+τ ∈ A−
δ ))

= e[A+ǫ(δ,t0,A,τ)]τ
〈

e−Ω0,t0−Ωt0+τ,2t0+τ
〉−1

Ωt0,t0+τ∈A+
δ

, (61)

where |ǫ(δ, t0, A, τ)| ≤ δ is due to the finiteness of A+
δ .

Having fixed τ > 0 and the tolerance δ > 0, we say that A lies in the domain D
of the steady state Ω-FR, if there exists t̂ > 0 such that µ(E(Ωt0,t0+τ ∈ A+

δ )) > 0 and

µ(E(Ωt0,t0+τ ∈ A−
δ )) > 0 for all t0 ≥ t̂. In other words, A ∈ D if positive and negative

fluctuations of size A have positive probability in the steady state. Using µ(E) = µt0(S
t0E),

where E is a subset of M, and µt0 is the evolved measure up to time t0, with density ft0 ,

some algebra yields the O-FR:

µt0(E(O0,τ ∈ A+
δ ))

µt0(E(O0,τ ∈ A−
δ ))

=
µ(E(Ot0,t0+τ ∈ A+

δ ))

µ(E(Ot0,t0+τ ∈ A−
δ ))

= 〈exp (−Ω0,t)〉−1

Ot0,t0+τ∈A+
δ

. (62)

For Ot0,t0+τ = Ωt0,t0+τ , taking the logarithm and dividing by τ produces:

1

τ
ln

µt0(E(Ω0,τ ∈ A+
δ ))

µt0(E(Ω0,τ ∈ A−
δ ))

= A + ǫ(δ, t0, A, τ) − 1

τ
ln
〈

e−Ω0,t0−Ωt0+τ,2t0+τ
〉

Ωt0,t0+τ∈A+
δ

(63)
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If µt0 tends to a steady state µ∞ when t0 → ∞, Eq.(63) should change from a statement on

the ensemble ft0 , to a statement on the statistics generated by a single typical trajectory. To

be of practical use, however, this statement requires that the logarithm of the conditional

average, divided by τ , M(A, δ, t0, τ) say, be controllable in Eq.(63). For instance, if it can be

made negligible, e.g. letting δ be small and τ grow after the t0 → ∞ limit has been taken,

as in the case of the Λ-FR, one would have the

Steady State Ω-FR. For any tolerance γ > 0 and A ∈ D, there are sufficiently small δ > 0

and large τ , such that

A − γ ≤ 1

τ
ln

µ∞(E(Ω0,τ ∈ A+
δ ))

µ∞(E(Ω0,τ ∈ A−
δ ))

≤ A + γ (64)

holds.

As in the case of the Λ-FR, the domain D would be model dependent, and its expression

could rest on non-trivial dynamical relations [68]. This requires some assumption. Indeed,

the growth of t0 could make M(A, δ, t0, τ) diverge (as in properly devised examples [46]). If

limt0→∞ |M(A, δ, t0, τ)| is bounded by some finite M(A, δ, τ), limτ→∞ M(A, δ, τ) could still

exceed the value of γ. The first difficulty is simply solved by the observation that the

divergence of M(A, δ, t0, τ) implies a divergence of the left hand side of Eq.(63), which in

turn means that one of its two probabilities vanish, i.e. that A /∈ D. If D is empty, the

steady state Ω-FR is of no interest, because there are no fluctuations in the steady state.

Therefore, let us assume that A ∈ D, and observe that the conservation of probability

yields the relation
〈

e−Ω0,s
〉

= 1 , for every s ∈ IR , (65)

first derived by Morriss and Evans (cf. [53], pp.198-202). Then, one possibility that can be

considered is that the Ω-autocorrelation time vanishes. In that case, one can write:

1 =
〈

e−Ω0,s−Ωs,t
〉

=
〈

e−Ω0,s
〉 〈

e−Ωs,t
〉

,
〈

e−Ωs,t
〉

= 1 , for all s, t , (66)

hence
〈

e−Ω0,t0 · e−Ωt0+τ,2t0+τ
〉

Ωt0,t0+τ∈A+
δ

=
〈

e−Ω0,t0 · e−Ωt0+τ,2t0+τ
〉

= 1 . (67)

Then, the logarithmic correction term in (63) identically vanishes for all t0, τ , and the Ω-FR

is verified at all τ > 0. Of course, this idealized situation does not need to be realized, but

tests performed on molecular dynamics systems [142] indicate that the typical situation is

not dissimilar from this; typically, there exists a constant K, such that

0 <
1

K
≤
〈

e−Ω0,t0−Ωt0+τ,2t0+τ
〉

Ωt0,t0+τ∈A+
δ

≤ K . (68)

As a matter of fact, the de-correlation or Maxwell time, tM , expresses a physical property

of the system, thus it does not depend on t0 or τ , and depends only mildly on the external

field [usually, tM(Fe) = tM(0)+O(F 2
e )]. Its order of magnitude is that of the mean free time.

If τ ≫ tM , the boundary terms Ωt0−tM ,t0 and Ωt0+τ,t0+τ+tM are typically small compared

to Ωt0,t0+τ , unless some singularity of Ω occurs within (t0 − tM , t0) or (t0 + τ, t0 + τ + tM ).
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However, similar events may equally occur in the intervals (0, t0) and (t0 + τ, 2t0 + τ), hence

Ωt0−tM ,t0 and Ωt0+τ,t0+τ+tM are expected to contribute only a fraction of order O(tM/τ) to

the arguments of the exponentials in the conditional average. Therefore, one can write
〈

e−Ω0,t0 · e−Ωt0+τ,2t0+τ
〉

Ωt0,t0+τ∈A+
δ

≈
〈

e−Ω0,t0−tM · e−Ωt0+τ+tM,2t0+τ
〉

Ωt0,t0+τ∈A+
δ

≈
〈

e−Ω0,t0−tM · e−Ωt0+τ+tM,2t0+τ
〉

≈
〈

e−Ω0,t0+tM

〉 〈

e−Ωt0+τ+tM ,2t0+τ
〉

= O(1) , (69)

with an accuracy which improves with growing t0 and τ , because tM is fixed. If these scenarios

are realized, Eq.(68) follows and M(A, δ, t0, τ) vanishes as 1/τ , with a characteristic scale of

order O(tM). In summary, the steady state Ω-FR holds under the following conditions.

Conditions:

1. the dynamics is time reversal invariant.

2. µt tends to µ∞ for t → ∞.

3. Eq.(68) is satisfied with K > 0, for A ∈ D, if τ and t0 are sufficiently larger than tM .

Condition (68) can actually be weakened, but the decay of the Ω-autocorrelations

characterizes the convergence to a steady state, and is very widely verified. Therefore,

the validity of Eq.(68), and not a weaker condition, explains why the steady state Ω-FR

holds for the particle systems so far investigated. The above derivation of the steady state

Ω-FR, under Conditions 1, 2 and 3, will not only answer the physics questions, but will also

be mathematically rigorous, if it will be proven that one (possibly physically uninteresting)

dynamical system satisfies them.

Various other relations can now be obtained [46]. For instance, any odd O, any δ > 0,

any t0 and any τ yield

〈exp (−Ω0,t)〉Ot0,t0+τ∈(−δ,δ) =
µt0(E(O0,τ ∈ (−δ, δ)))

µt0(E(O0,τ ∈ (−δ, δ)))
= 1 , (70)

which, in the δ → ∞ limit, produces the normalization property (65). The Dissipation

relation

〈O(t)〉 =

∫ t

0

ds〈Ω(0)O(s)〉 , (71)

is another direct consequence of the approach followed in this section [143].

5.1. Green-Kubo relations

A consistency check of the present theory is afforded by the derivation of the Green-Kubo

relations based on the Ω-FR [36]. Differently from Ref. [34], which deals with time-

asymptotic quantities, this derivation stresses the role of the physical time scales. To be

concrete, take a Nosé-Hoover thermostatted system, whose equilibrium state is the extended

canonical density

fc(x, α) =
e−β(H0+Qα2/2)

∫

dα dx e−β(H0+Qα2/2)
, (72)
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where Q = 2K0τ
2 and H0 is the internal energy [53]. This yields

fc(α) =

∫

dxfc(x, α) =

√

βQ

2π
exp

[

−βQα2/2
]

(73)

Therefore, the distribution of α0,t is Gaussian in equilibrium, and near equilibrium it can be

assumed to remain such, around its mean, for large t (CLT). To use the FR together with

the CLT, the values A and −A must be a small number of standard deviations away from

〈Ω〉. In [57] it was proven that

tσJt
(Fe) = 2L(Fe)kB

T/V + O((Fe)
2/tN) ,

where

L(Fe) = βV

∫ ∞

0

dt〈(J(t) − 〈J〉Fe
)((J(0) − 〈J〉Fe

)〉Fe
,

Fe is the external field, 〈·〉Fe
is the phase space average at field Fe and L(0) = limFe→0 L(Fe)

is the corresponding linear transport coefficient. When t grows, A = 0 gets more and

more standard deviations away from 〈Ω〉, which is O(F 2
e ), for small Fe, while the standard

deviation tends to a positive constant, since that of α tends to 1/
√

βQ. Assume for simplicity

that the variance of Ω0,t(Fe) is monotonic in Fe at fixed t, and in t at fixed Fe. Then, there

is tσ(Fe, A) such that the variance is sufficiently large when t < tσ(Fe, A). At the same time,

t has to be larger than a given tδ(Fe, A) for the steady state Ω-FR to apply to the values

A and −A, with accuracy δ. Assume that also tδ(Fe, A) is monotonic in Fe. To derive the

Green-Kubo relations, one then needs tδ(Fe, A) < t < tσ(Fe, A) for Fe → 0, which is possible

because the distribution tends to a Gaussian centered in zero, when Fe tends to zero and t

is fixed. The result is:

〈Ω〉 =
1

2
σ2(Ω) or L(0) = lim

Fe→0

〈J〉Fe

Fe
= βV

∫ ∞

0

dt 〈J(0)J(t)〉Fe=0 . (74)

5.2. Discussion

The analysis of this section shows that the steady state Ω-FR and its consequences can be

obtained only from time reversibility and from the Ω-autocorrelation decay. These are the

physical mechanisms underlying the validity of the steady state Ω-FR and, indeed, they

correctly identify the relevant time scales. From a purely mathematical point of view, the

decay of the Ω-autocorrelation could be relaxed,∗ but is needed for the convergence to a

steady state. Therefore, the systems that verify the steady state Ω-FR do not need to have

any (even approximate) Anosov structure. At the same time, the above analysis does not

identify the class of dynamical systems which enjoy the required Ω-autocorrelation decay, as

needed to make rigorous the above derivation of the steady state Ω-FR. However, this does

not impair our understanding of the physics of the steady state Ω-FR, while the explicit

construction of artificial models verifying (68) is not necessarily physically revealing.

∗ It suffices that the t0 → ∞ limit of the conditional average of Eq.(63) grows less than exponentially fast,

with τ , or that its exponential growth has a rate smaller than δ.
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How can the above analysis be reconciled with axiom C systems, and their modified

Λ-FR, Eq.(42), introduced in Refs. [47,48]? Axiom C systems, indeed, enjoy a strong decay

of correlations and, although there are no particle systems known to be of their kind, they

can be abstractly conceived. Furthermore, modified FRs have been observed to hold for

some observables, in particular dynamical systems [49]. The answer is that the decay of

correlations of axiom C systems does not imply the decay required here: the first concerns

all observables, and is referred to the invariant measure; the second concerns only Ω, and

is referred to the initial measure [46]. Therefore, certain dynamics may enjoy a decay of

correlations with respect to µ∞, while they do not with respect to µ, and no contradiction

arises. What happens, in general, is not known. In Ref. [46], Appendix 2, the behaviour of

M(A, δ, t0, τ) has been explicitly computed for the isokinetic particle in free space, proposed

in Ref. [144]. It was found that M diverges, hence that it does not verify (68), and that the

Ω-FR does not apply, in agreement with the fact that the steady state of that system has no

fluctuations. The study of more general cases is desired. It is also desired that the physical

meaning of condition (68) be better understood. Indeed, close to equilibrium, the decay

of correlations with respect to the equilibrium measure amounts to the standard condition,

required by the Green-Kubo theory, for the existence of the transport coefficients. Far from

equilibrium, it needs to be understood.

Given that Eq.(63) is an exact result, various mathematical questions arise. Can one find

dynamical systems and functions of phase for which Eq.(68) holds? How does M(A, δ, t0, τ)

behave in axiom C systems, in general? What happens with the steady state fluctuations of

Ω, if Ω is bounded?

6. Work relations: Jarzynski and Crooks

Consider a finite particle system, in equilibrium with a much larger system, which constitutes

a heat bath at temperature T . Assume that the overall system is described by a Hamiltonian

of the form

H(Γ; λ) = H(x; λ) + HE(y) + hi(x, y) (75)

where x and y denote the positions and momenta of the particles of, respectively, the system

of interest and of the bath, hi represents the interaction between system and bath, and λ

is an externally controllable parameter. This system can be driven away from equilibrium,

performing work W on it, by acting on λ. Let λ(0) = A and λ(τ) = B be the initial and final

values of λ, for a given evolution protocol λ(t). Suppose the process is repeated very many

times to build the statistics of the work done, varying λ from A to B always in the same

manner. Let ρ be the PDF of the externally performed work. This is not the thermodynamic

work done on the system, if the process is not performed quasi statically [145], but is always

a measurable quantity. The Jarzynski Equality predicts that [90]:

〈

e−βW
〉

A→B
=

∫

dW ρ(W )e−βW = e−β[F (B)−F (A)] (76)
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where β = 1/k
B
T , and [F (B) − F (A)] is the free energy difference between the initial

equilibrium state, with λ = A and the equilibrium state which is eventually reached for

λ = B. The average 〈e−βW 〉A→B is the average over all works done in varying λ from A

to B. While the process always begins in the equilibrium state corresponding to λ = A,

the system does not need to be in equilibrium when λ reaches the value B. However, the

equilibrium state with λ = B exists and is unique, hence F (B) is well defined. Equation

(76) is supposed to hold whichever protocol one follows to change λ from A to B, hence also

arbitrarily far from equilibrium (large λ̇); therefore the presence of the equilibrium quantities

F (A) and F (B) in Eq.(76) is remarkable. From the thermodynamic point of view, one

observes that the externally measured work does not need to coincide with the internal work

(which would not differ from experiment to experiment, if performed quasistatically). From

an operational point of view, it does not matter whether the system is in local equilibrium

or not: certain forces are applied, certain motions are registered, hence certain works are

recorded. The Jarzynski equality is a transient relation and, similarly to the transient Ω-

FR, rests on minimal conditions on the microscopic dynamics. It is also consistent with the

second law of thermodynamics, since it yields

〈βW 〉A→B ≥ β [F (B) − F (A)] (77)

because ln 〈Φ〉 ≥ 〈ln Φ〉 for positive observables Φ.

Similarly, computing the ratio of the probability that the work done in the forward

transformation is W , to the probability that it is −W in the B to A transformation, with

reversed protocol −λ̇, produces the Crooks Relation [91]:

PA→B(W = a)

PB→A(W = −a)
= e−β[F (B)−F (A)] ea (78)

The Crooks Relation, leads to the Jarzynski Equality, by a simple integration:

〈

e−βW
〉

A→B
=

∫

PA→B(W = a)e−ada = e−β[F (B)−F (A)]

∫

PB→A(W = −a)da (79)

= e−β[F (B)−F (A)] (80)

These results and the Ω-FR are connected. In the first place, the transient Ω-FR may be

applied to the protocols of the Jarzynski Equality and of the Crooks Relation, [132]. Then, let

fA and fB be the canonical distributions at same inverse temperature β for the Hamiltonians

HA and HB of the equilibrium states A and B respectively. The corresponding Helmholtz

free energies are Fi = −k
B
T ln

∫

dx exp[−Hi(x)/k
B
T ] for i = A, B. For simplicity, let λ

go from A to B in a time τ , with rate λ̇ = 1/τ , and from B to A with rate λ̇ = −1/τ .

Correspondingly, a thermostatted evolution may be defined by

λ̇ = ±1

τ

q̇ =
∂H(q,p; λ)

∂p
; ṗ = −∂H(q,p; λ)

∂q
− Siα(x)p ; Si =

{

1, i = 1, ..., Nw

0, i > Nw
(81)
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where the thermostat acts only on Nw particles (the walls of the system), to fix their kinetic

temperature and mimic a heat bath. Then, the work performed by the external forces is

given by βW = β[HB − HA] − Λ0,τ . If A and B are the same equilibrium state, the Ω-FR

applies directly, and the Jarzynski equality is an immediate consequence of the Ω-FR because

the Ω-FR implies

〈

e−βW
〉

=

∫

P (W )e−βWdW

∫

dWP (−W ) = 1 . (82)

The Ω-FR, the Jarzynski Equality and the Crooks Relation do not have same range of

applicability, the Crooks Relation being the most general for canonical ensembles [132]. It is

remarkable how they connect equilibrium to nonequilibrium properties of physical systems;

their interest is bound to grow with our understanding of microscopic systems, particularly

in nanotechnology and biophysics [45]. One reason for considering NEMD models in this

context, is that they afford heat baths which are not affected by the transformation processes

during which work is done on the system of interest. Differently, finite Hamiltonian reservoirs

are not guaranteed to be as isothermal as required. Although the effect of the work done

may be negligible on averages, if the reservoirs are large, its influence on fluctuations could

be sizeable, especially in particular circumstances, like around phase transitions. Therefore,

that different approaches agree where appropriate, strengthens all results.

7. Stochastic systems and the Van Zon - Cohen extended FR

The first stochastic FR was derived by Kurchan, who obtained a modified detailed balance

property for Langevin processes of finite systems, and a FR for the entropy production,

under a few assumptions, like the boundedness of the potentials [75]. In 1999, Lebowitz and

Spohn [76] extended Kurchan’s results to generic Markov processes: under the assumption

that local detailed balance is attained, they showed that the Gibbs entropy variation is

related to the action functional that satisfies the FR. This suggests that in Markov processes

the Gibbs entropy variation plays the role of the phase space contraction. In Ref. [78], Maes

obtained a large deviation principle for discrete space-time Gibbs measures, leading to a FR

for a kind of Gibbs entropy variation in time discrete lattice systems. These results can be

seen as a generalization of the Λ-FR and of its stochastic versions, since stochastic dynamics

and thermostatted systems satisfying the chaotic hypothesis are examples of systems with

space-time Gibbs measures.

In 2002, Farago pointed out that singularities may cause difficulties in the conventional

use of stochastic FRs [136]. In the same year, Wang et.al. reported the experimental

verification of an integrated version of the Ω-FR for colloidal particles dragged through water,

by a moving optical trap [59]. This experiment may be modeled through an overdamped

Langevin process, describing a Brownian particle, dragged in a liquid by a moving harmonic

potential with a constant velocity v∗ [79, 80, 136, 137,146,147]:

dx(t)

dt
= −(x(t) − x∗(t)) + ζ(t) . (83)
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Here x(t) is the position of the particle at time t, x∗(t) = v∗t the position of the minimum

of the potential, ζ(t) is a white noise term representing the fluctuating force the fluid exerts

on the particle, and kBT = 1. Then, the work done in a time τ is

Wτ = v∗

∫ τ

0

[−(x(t) − x∗(t)]dt . (84)

Analyzing the results of [59] from this point of view, Van Zon and Cohen [79,80] considered

separately the dissipated energy, or the heat Qτ , and the potential energy of the Brownian

particle ∆Uτ , and

Wτ = Qτ + ∆Uτ . (85)

In [133], Van Zon and Cohen showed that, in a comoving frame, Eq. (83) reduces to a

standard Ornstein-Uhlenbeck process and thus, the stationary probability distribution and

Green’s function are Gaussian in the particle’s position. Since the total work is linear in the

particle’s position, Wτ is Gaussian as well. Because of this and of Eq. (84), the variance of

transient fluctuations of Wτ equals 2〈Wτ〉, and the total work satisfies the transient FR. In

the τ → ∞ limit, the variance of Wτ remains twice its mean, hence the total work satisfies

the steady state FR.

Van Zon and Cohen clarified that the experiment of [59] concerned the total work, and

that the PDF of the potential energy is exponential at equilibrium, P(∆U) ∼ exp(∆U),

and is expected to remain exponential away from equilibrium. Therefore, while the small

fluctuations of heat are expected to coincide with those of the total work, since the

contribution of the potential energy is only O(1), large heat fluctuations are more likely

to be due to a large fluctuation of the potential energy.

To summarize the derivations of Ref. [80], consider the harmonic potential V (x, t) ≡
1
2
|x(t) − x∗(t)|2 in Eq. (85). Then the heat Qτ is nonlinear in the particle’s position, hence

its PDF needs not be Gaussian. Its Fourier transform is

P̂τ (q) ≡
∫ ∞

−∞

dQτe
iqQτ Pτ (Qτ ) . (86)

Writing Pτ (Qτ ) in terms of the joint distribution of the work Wτ and of the positions

x(0), x(τ), one obtains

P̂τ (q) =
exp

{

w (i − q)
(

τ − 2q2(1−e−τ )2

1+(1−e−2τ )q2

)}

[1 + (1 − e−2τ )q2]3/2
, (87)

where w = 〈Wτ 〉/τ is the rate of work done in the system, and 〈·〉 is the steady state average.

Anti-transforming P̂τ (q), one considers the heat fluctuation function

fτ (p) =
1

wτ
ln

[

Pτ (pwτ)

Pτ (−pwτ)

]

, (88)

where p = Qτ/〈Qτ 〉 and 〈Qτ 〉 = 〈Wτ 〉 − 〈∆Uτ 〉 = wτ , since 〈∆Uτ 〉 = 0, in the steady state.

To obtain an asymptotic analytical expression of Eq. (88), consider the quantity

e(λ) ≡ lim
τ→∞

− 1

wτ
〈e−λQτ 〉 , (89)
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and, for large τ ,

Pτ (Qτ ) ∼ e−wτê(Qτ /wτ) , (90)

where ê(p) = max{λ} [e(λ)− λp] is the Legendre transform of e(λ). As Lebowitz and Spohn

proved for a class of stochastic models [76], if the relation

e(λ) = e(1 − λ) (91)

is satisfied, then the conventional steady state FR holds: limτ→∞ fτ (p) = p (cf. Eqs. (88, 90,

91)). Analytically continuing P̂τ to imaginary arguments, one gets 〈e−λQτ 〉 = P̂τ (iλ), i.e.

〈e−λQτ 〉 =
exp

[

−wλ(1 − λ)
{

τ + 2λ2(1−e−τ )2

1−(1−e−2τ )λ2

}]

[1 − (1 − e−2τ )λ2]3/2
, (92)

which is singular for λ = ±(1 − e−2τ )−1/2. Using Eqs. (89) and (92) and taking the limit

τ → ∞, the singularities move to ±1, and Eq. (91) is satisfied for |λ| < 1. For |λ| > 1, the

integral in Eq. (86) diverges, because of the exponential tails of Pτ (Qτ ). Thus, substituting

in ê(p) and Eq. (90), one obtains

lim
τ→∞

fτ (p) =











p for 0 ≤ p < 1

p − (p − 1)2/4 for 1 ≤ p < 3

2 for p ≥ 3

where fτ (−p) = −fτ (p) , (93)

i.e. the fluctuations of heat smaller than 〈Qτ 〉 satisfy the conventional FR, like those of Wτ ,

while larger heat fluctuations satisfy the modified relation (93).

These results do not contradict those of Ref. [76], because Qτ lives in an infinite

state space, due to the unboundness of the potential, while Ref. [76] only concerns finite

state spaces. Therefore, Qτ is affected by boundary terms which cannot be neglected and

which distinguish its behaviour from that of Wτ [138]. As discussed in Section 4, a similar

phenomenon may concern Λ, in deterministic systems [36, 134]. Therefore, one may argue

that Λ plays the role of heat [148]. Baiesi et al. generalize the results of [79,80] considering

a Langevin process with general confinement potential and motion of the minimum of the

potential, x∗ [137]. They find necessary conditions on the potential V and on its motion x∗(t),

for Wτ to satisfy the steady state FR, namely: a) x∗ must be even in time (x∗(t) = x∗(−t)),

or b) it must be odd (x∗(t) = −x∗(−t)) and V must be even in space (V (x, t) = V (−x, t)).

Under these conditions, they obtain a generalization of Eq. (93) for the fluctuations of

heat. In particular, numerical test shows that for x∗ moving at constant velocity and non-

symmetric V ’s, Wτ does not satisfy the steady state FR [137]. Similar observations are

reported in [149].

The question of the validity of the extended FR of [79, 80] has been addressed in other

papers, like Ref. [138], where the extended FR is verified on a granular system. Differently,

Ref. [139] shows that the extended FR does not hold in the partially asymmetric zero-range

process with open boundaries. Various other studies have recently dealt with the statistical

properties of Brownian particles and Langevin processes, like Refs. [37,92,93,140,150–153].

31



8. Temporal asymmetry of fluctuations

References [82, 154, 155] propose extensions of the Onsager-Machlup theory [13, 14] to the

large fluctuations of physical systems in nonequilibrium steady states, from which stochastic

FRs can be obtained. For density-like observables of stochastic processes describing

nonequilibrium systems in local thermodynamic equilibrium, the theory predicts temporal

asymmetries in the corresponding fluctuation-relaxation paths (FRPs).

For a class of stochastic lattice gases, which admit the hydrodynamic description

∂t̺ = ∇ ·
[

1

2
D (̺)∇̺

]

≡ D (̺) , ̺ = ̺(u, t) , (94)

where ̺ is the vector of macroscopic observables, u is the macroscopic space variable, t is

the macroscopic time, D is the Onsager diffusion matrix, let ˆ̺ be the steady state, with the

given boundary conditions. Then, Refs. [154, 155] proves that the spontaneous fluctuations

out of a steady state, are governed by a certain adjoint hydrodynamic equation:

∂t̺ = D∗ (̺) , (95)

with same boundary conditions. This is supposed to hold much more generally; namely,

whenever the following holds [154, 155]:

Assumptions: 1) The mesoscopic evolution is given by a Markov process Xt, which

represents the configuration of the system at time t. The nonequilibrium steady state is

described by a probability measure Pst over the trajectories of Xt;

2) the fields ̺ obeying Eq.(94) constitute the local thermodynamic variables, and the steady

state under the given boundary conditions is unique;

3) Denoting by θ the time inversion operator defined by θXt = X−t, the probability measure

P ∗
st, describing the evolution of the time reversed process X∗

t , and Pst are related by

P ∗
st(X

∗
t = ϕt, t ∈ [t1, t2]) = Pst(Xt = ϕ−t, t ∈ [−t2,−t1]). (96)

If L is the generator of Xt, the adjoint dynamics is generated by the adjoint (with respect to

the invariant measure µ) operator L∗, which admits the adjoint hydrodynamics (95) ;

4) The measure Pst admits a large deviation principle describing the fluctuations of ̺.

This is the mesoscopic evolution, which is a reduced, or coarse grained, description of

underlying deterministic dynamics. It implies that spontaneous macroscopic fluctuations out

of a nonequilibrium steady state most likely follow a trajectory which is the time reversal of

the relaxation path, according to the adjoint hydrodynamics, i.e.

∂t̺ = D∗(̺) = D(̺) − 2A , (97)

where D can be decomposed as

D(̺) =
1

2
∇ ·
(

χ(̺)∇δS
δ̺

)

+ A (98)

and A is a vector field orthogonal to the thermodynamic force δS/δ̺. Thus A does not

contribute to the entropy production. In the limit of small fluctuations, and small differences
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in the chemical potentials at the boundaries, Onsager’s theory is recovered, because A is a

higher order term.

Although the stochastic behaviour should be a coarser description of the deterministic

one, at present the gap between the theory of [154, 155] and the behaviour of systems such

as the NEMD models does not seem to be bridgeable in rigorous terms. Thus, one wonders

whether the predictions of Refs. [82, 154, 155] may be verified in reversible deterministic

particle systems. In particular, are the corresponding FRPs asymmetric in time? This

is important, in order to understand how common the asymmetric behaviour might be

in nonequilibrium phenomena. Also, the temporal asymmetry of fluctuations has some

bearing on the question of how macroscopic irreversibility relates to the reversible microscopic

dynamics [156], a question which cannot be addressed investigating intrinsically irreversible

stochastic systems. Therefore, the stochastic approach needs to be complemented by the

deterministic one. In Ref. [157], no temporal asymmetry was detected in the nonequilibrium

Lorentz gas; while in Refs. [158–160], temporal asymmetries were found in the FRPs of the

nonequilibrium FPU model of [66], and of the SLLOD model.

The origin of the temporal asymmetry may be heuristically understood considering the

macroscopic deterministic (irreversible) dynamics described by

˙̺ = D(̺) , (99)

on M ⊂ IRn, where D is a vector field with a unique attracting fixed point ˆ̺ ∈ M
[157–159]. This is compatible with microscopically reversible dynamics, in which case ˆ̺

has a repelling counterpart ˜̺. The n components of ̺ may represent the values taken by

a scalar thermodynamic observable on the n different sites of a spatially discrete system.

Let the local mesoscopic dynamics be a perturbation of Eq.(99), with a Gaussian noise

of covariance 〈ξi (t) ξj (t′)〉 = Kijδ (t − t′) and mean 〈ξ(t)〉 = 0, where K is a symmetric,

positive definite matrix:

˙̺ = D(̺) + ξ . (100)

This allows different evolutions between one initial state ̺i = ̺ (ti) and one later state

̺f = ̺ (tf ). The different paths connecting ̺i to ̺f occur with different probabilities,

P ∝ exp (−Ipath), and, Eq.(99) can be obtained from the minimization of the terms

Ipath (̺) ≡ 1

2

∫ tf

ti

〈 ˙̺ −D , ˙̺ −D〉 dt , (101)

where 〈x, y〉 = xT K−1y, and the superscript T indicates matrix transposition. Suppose that

the vector field D can be decomposed as

D (̺) = −1

2
K∇̺V (̺) + A (̺) , with 〈K∇̺V , A〉 = 0 , (102)

and let ˆ̺ be a minimum of V , with V (ˆ̺) = 0. This decomposition separates dissipative

contributions to D from non-dissipative ones, and is considered in diffusion processes

described by finite dimensional Langevin equations [161]. Integrating by parts, the “entropy”
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functional can be written as

Ipath (̺) =
1

2

∫ tf

ti

〈

˙̺ +
1

2
K∇̺V −A , ˙̺ +

1

2
K∇̺V −A

〉

dt (103)

=
1

2

∫ tf

ti

〈

˙̺ − 1

2
K∇̺V −A , ˙̺ − 1

2
K∇̺V −A

〉

dt + [V (̺f ) − V (̺i)] (104)

whose last term has no variation. Hence, two kinds of evolution are possible for ̺: the

relaxations converging to ˆ̺, which minimize (103) and obey (99), and the fluctuations away

from ˆ̺, which minimize (104), i.e.

˙̺ = −D∗ (̺) =
1

2
K∇̺V + A (̺) = −D + 2A . (105)

The qualitative properties of the deterministic dynamics do not depend on A, as the time

derivative of the Lyapunov function V does not depend on A:

V̇ (̺) = ∇̺V (̺) · D (̺) − 1

2
〈K∇̺V (̺) , K∇̺V (̺)〉 ≤ 0 . (106)

Thus, taking ̺i = ˆ̺, ̺f = ρ in (104), one finds that A does not contribute to the “entropy”

production, while the asymmetry between normal and adjoint dynamics, which implies the

macroscopic irreversibility, depends on this non-dissipative term. It turns out that one

peculiarity of the nonequilibrium Lorentz gas of Ref. [157] is that A tends to zero when the

number of particles grows, which explains the absence of temporal asymmetries in Ref. [157].

This is due to the fact that the particles don’t interact with each other and that the dynamics

is chaotic [158,159]. Because that is a rather special situation, temporal asymmetries should

be common in nonequilibrium systems [158–160].

Thus, the separation of a reversible part from an irreversible process, which was part

of the “pseudo-thermostatic” theories, like Thomson’s theory of thermoelectricity, and was

considered rather artificial in the past (cf. [162] pp.3,4), results particularly revealing in the

present context.

Note that, because there is no “natural” concept of FRP in deterministic dynamics,

several notions of FRPs have been proposed in Refs. [157–160].

9. Numerical and experimental tests

The FR for nonequilibrium systems was proposed and numerically verified by Evans, Cohen

and Morris in Ref. [29], where Ω = Λ. After this seminal paper, several numerical tests have

been devoted to the Λ-FR, in order to understand how properly do the Chaotic Hypothesis

and the Λ-FR describe models of physical systems, as, in general, they do not enjoy the

Anosov property [47, 49, 57, 60, 61, 63, 67, 126, 130, 131]. Most tests concern, instead, the Ω-

FR, or functions related to the dissipated energy, both in transient and steady states, e.g.

Refs. [30, 31, 47, 49, 56, 57, 66, 84, 130, 131,163,164]. Let us consider some of these works.

Lepri, Livi and Politi considered the nonequilibrium FPU chain [66], in which the first

and last oscillators are coupled to Nosé-Hoover thermostats at different temperatures TL and
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TR, and the energy fluxes at the left and right ends of the chain, jL and jR, are given by

jL,R = −〈ζL,R〉TL,R , (107)

where 〈ζL,R〉 is the mean value of the corresponding effective momentum of the thermostat.

SincejL = −jR = j in the stationary state, Eq.(107) yields

〈ζL〉 + 〈ζR〉 = j

(

1

TR

− 1

TL

)

(108)

which is equivalent to the global entropy production, as obtained from linear response. For

the Nosé-Hoover thermostat 〈ζL〉 + 〈ζR〉 equals 〈Λ〉, but the instantaneous values and the

PDF of Λ and j are not equal [135]. Interestingly, the energy flux was found to obey the

FR.

In Ref. [130], the nonequilibrium Ehrenfest wind-tree model is studied. Despite the lack

of chaos, the wind-tree model, with small external fields and isokinetic Gaussian thermostat,

has long quasi-steady transients, in which the dynamics looks random and a sort of steady

state Ω-FR holds, although the asymptotic state is a periodic orbit. A similar result is found

in the polygonal billiards of Ref. [131].

In Ref. [126], the modified Λ-FR, with c given by Eq.(43), was found consistent with

highly dissipative SLLOD systems but, as in Refs. [47, 61], a direct test could not be

performed, because of the scarce statistics of negative fluctuations. However, assuming the

validity of a simple scaling for the PDFs of the fluctuations, an indirect verification of Eq.(43)

was obtained. A direct verification of a modified Λ-FR is found in Ref. [49], for the GNS

models of Eq.(22), with very few modes but large Reynolds number. The only particle system

in which an excess of negative Lyapunov exponents has been obtained without suppressing

the negative fluctuations of Λ is the low dimensional Nosé-Hoover thermostated oscillator of

Ref. [50], for which the standard Λ-FR was verified.

The extended FR of Van Zon and Cohen [79, 80] has been numerically verified for

overdamped Langevin particles and other stochastic models, such as the Markov chain and

the granular fluids of [138]. A verification for other confining potentials and trap motions

has been obtained in Ref. [137]. Gilbert has studied the Nosé-Hoover thermostatted Lorentz

gas [67], previously considered in [63], in which one particle diffuses in a billiard and is

subjected to an external uniform electric field and a Nosé-Hoover thermostat. Differently

from the IE case, the Nosé-Hoover model has unbounded Λ. Gilbert found that the

fluctuations of Λ follow (up to finite size effects) Eq.(93). However, it is not clear which

class of systems obeys the modified Λ-FR, since models with Nosé-Hoover thermostats, such

as those of [50, 135], obey the standard FR.

Among the numerical studies on temporal asymmetries of FRPs, the one of Ref. [165]

concerns the fluctuations of cross correlation functions, not considered in Refs. [157–160].

Experimental tests of FRs pose difficult problems. The first such experiment was

presented by Ciliberto and Laroche, in 1998 [166], where the temperature fluctuations in

a fluid undergoing Rayleigh-Bénard convection were found to obey a linear law similar to
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the FR, but with a different slope. A delicate point of Ref. [166], is that the fluctuations in

temperature were considered proportional to the fluctuations in entropy production.

In 2002 Wang et al. experimentally studied the fluctuations of work done on a colloidal

particle dragged through water by an optical trap, and verified an integrated form of the

transient Ω-FR. This experiment motivated Ref. [79,80]. An experimental verification of the

steady state Ω-FR followed [141].

In 2004 Feitosa and Menon studied a mechanically driven inelastic granular gas in a

fluidized steady state [167]. They considered the power fluctuations in a subvolume of the

box containing the granular gas. Identifying the entropy production as the quotient between

the power and the effective temperature, they verified a local version of Ω-FR.

Garnier and Ciliberto, in 2005, studied the fluctuations of the dissipated power of an

electric dipole, consisting of a resistor connected in parallel with a capacitor, and driven

out of equilibrium by an electrical current through the circuit [64, 65]. The work and heat

fluctuations, both related to the fluctuations of the power dissipated by the resistor, were

considered: the work fluctuations satisfy the Ω-FR with high accuracy, while the PDF of

heat has non-Gaussian tails, and is consistent with the extended FR of Van Zon and Cohen.

Shang et al. studied the fluctuations of a local entropy production in turbulent thermal

convection [168]. They considered a cylindrical cell filled with water. The steady state Ω-FR

was confirmed measuring the velocity and temperature fields.

Tietz et al. measured the entropy production for a single two-level system, a defect

center in natural IIa-type diamond [169]. Using fluorescence spectroscopy, they studied

the transitions between “dark” and “bright” states and, following [150], showed that their

“stochastic entropy production” satisfies a kind of FR.

In 2006, Douarche et al. studied the steady state and transient work fluctuations of a

damped harmonic oscillator that is kept out of equilibrium by an external force [170]. They

considered a torsion pendulum in a cell filled with a solution of water-glycerol, and measured

optically its torsional motion. A time dependent external torque was applied and controlled

by an electric current, and the fluctuations of work were studied. The transient FR was

confirmed for any averaging time. The steady-state version is observed to converge, although

in a complex fashion that depends on the external driving. Douarche et al. had previously

experimentally confirmed the Jarzynski and Crooks equalities in the same experimental

setup [171].

Blickle et al. tested the validity of the Jarzynski and Crooks equalities for a colloidal

particle in a time-dependent nonharmonic potential [172]. Their experiment consisted in an

aqueous suspension of micrometrical polystyrene beads. Using optical tweezers they drove

one of the colloidal particles between two equilibrium states and found that the work exerted

on the particle verifies the Jarzynski and Crooks relations.

The Jarzynski equality has found applicability in molecular and biophysical experiments,

because it can be used to estimate the equilibrium free energy out of measurements of

dissipated work, in nonequilibrium processes. This is particularly useful in systems for

which no other method to estimate the free energy exists. The Jarzynski Equality was first
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confirmed in 2002 by Liphardt et al. in measurements of the dissipated work in folding-

unfolding process of a single molecule of RNA [173]. Collin et al. experimentally confirmed

the Crooks relation near and far from equilibrium [174], using optical tweezers and measuring

the dissipative work during the unfolding and refolding of a small RNA molecule.

A relation which is often mentioned in connection with the Jarzynski and Crooks

relations is the steady-state equality of Hatano and Sasa [92], which has been verified in [175].

For more on experimental verifications of FRs, see Refs. [45,176, 177].

10. Concluding remarks

A unifying picture of nonequilibrium physics is emerging, thanks to the development of

theories describing the nonequilibrium fluctuations, whose role appears to be at least as

fundamental as that of equilibrium fluctuations. There are two kinds of FRs: transient

and steady state FRs, which are of totally different nature. Besides being interesting for

conceptual reasons, both kinds of relations are important in the description of small systems,

such as nanotechnological devices and biological systems.

The transient FRs connect in a striking fashion equilibrium and nonequilibrium

properties of physical systems, in that they consider at once the statistical properties of

equilibrium states and nonequilibrium dynamics. Their predictions describe the statistics of

ensembles of experiments, are valid under extremely wide conditions, and can be verified by

a large variety of physical systems.

The steady state relations, on the other hand, concern the asymptotic statistics

generated by a single system evolution, if a steady state is reached. Despite the available

rigorous derivations of such relations require very restrictive conditions, which are hardly

met by any system of physical interest, the steady state FRs appear to hold for a wide

class of systems. Indeed, the analysis of the physical mechanisms underlying the validity of

these relations explains why they should be verified as widely as common thermodynamic

relations can. As Section 5 shows, the steady state Ω-FR and its consequences can be

obtained only from time reversibility and from the Ω-autocorrelation decay. With these

ingredients, indeed, the Ω-FR is proven to hold [46]. The above analysis cannot contradict

the theory based on axiom C systems, because it rests on exact results –Eq.(63) in particular–

but it raises various questions. For instance, the fact that the decay of correlations of axiom

C systems does not imply the Ω-autocorrelation decay required by the steady state Ω-FR

deserves further investigation. Also, in the linear regime of Irreversible Thermodynamics, the

Ω-autocorrelation decay is required for the transport coefficients to exist, but the meaning

of (68) far from equilibrium has still to be fully understood, although it is consistent with

the available data. The analysis based on the decay of the Ω-autocorrelation leads also to a

number of predictions [46], most of which have still to be considered in experimental tests,

and attributes a lower importance to strong chaos than to correlations decay of small sets

of observables, which is favoured by the large number of degrees of freedom [159,178].

The interplay of deterministic and stochastic approaches is also quite useful. For
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instance, we have seen how the result of Evans, Cohen and Morriss for deterministic

systems has motivated much research on stochastic processes, while the work by Bertini, De

Sole, Gabrielli, Jona-Lasinio and Landim has motivated the study of otherwise unexpected

properties of deterministic systems.

Having understood the physical mechanisms underlying the validity of the FRs, the

present theory may be further developed in directions which aim to clarify various open

questions, which are both of mathematical and physical interest. Among those mentioned

at the end of Sections 1, 4 and 5, let us recall the decay of correlations with respect to the

equilibrium and to the steady state measures, the physical relevance of axiom C systems,

the construction of dynamical systems which obey (68), and the properties of different

thermostatting mechanisms. The interaction between mathematical and physical approaches

seems particularly necessary to explore these new lands.
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73:035102, 2006.

[68] G Gallavotti. Reversible Anosov diffeomorphisms, large deviations. Math. Phys. Electronic J., 1:1,

1995.

[69] G Gallavotti. Fluctuation theorem revisited. 2004. http://arXiv.org/cond-mat/0402676.

[70] J-P Eckmann, C-A Pillet, and L Rey-Bellet. Entropy production in nonlinear, thermally driven

Hamiltonian systems. J. Stat. Phys., 95:305, 1999.

[71] L Rey-Bellet and L E Thomas. Fluctuations of the entropy production in anharmonic chains. Ann.

40



Henri Poincaré, 3:483, 2002.
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