2,689 research outputs found

    Alignment Strategy for the ATLAS Tracker

    Get PDF
    ATLAS is a general purpose spectrometer in preparation to take data on the Large Hadron Collider at CERN. It will start its operation in autumn 2007. Charged particle tracking is realized by the Inner Detector. ID consists of two silicon subsystems: Pixel Detector and Semiconductor Tracker complemented by straw proportional gas chambers. In order to exploit the excellent intrinsic resolution of the precision tracking devices a high accuracy alignment is required. In this report the strategy to align silicon detectors of the ATLAS ID will be reviewed together with the current status of preparation

    Alignement strategy for the Inner Detector of ATLAS

    Get PDF
    002704675 ATLAS is a general-purpose spectrometer in preparation for taking data at the Large Hadron Collider at CERN. It will start operation in autumn 2007. Charged particle tracking is realized by the Inner Detector. The Inner Detector consists of two silicon subsystems: a Pixel Detector and a Semiconductor Tracker complemented by straw proportional gas chambers. In order to exploit the excellent intrinsic resolution of the precision tracking devices high accuracy alignment is required. In this report the strategy to align the sub-detectors of the ATLAS Inner Detector is reviewed, together with the current status of preparation. Both track-based and hardware alignment methods are presented

    Alignment strategy for the Inner Detector of ATLAS

    Get PDF
    ATLAS is a general purpose spectrometer in preparation to take data on the Large Hadron Collider at CERN. It will start its operation in autumn 2007. Charged particle tracking is realized by the Inner Detector. ID consists of two silicon subsystems: Pixel Detector and Semiconductor Tracker complemented by straw proportional gas chambers. In order to exploit the excellent intrinsic resolution of the precision tracking devices a high accuracy alignment is required. In this report the strategy to align sub-detectors of the ATLAS ID is reviewed together with the current status of preparation. Both track-based and hardware alignment methods are presented

    Least Squares Approach to the Alignment of the Generic High Precision Tracking System

    Get PDF
    A least squares method to solve a generic alignment problem of high granularity tracking system is presented. The formalism takes advantage of the assumption that the derived corrections are small and consequently uses the first order linear expansion throughout. The algorithm consists of analytical linear expansion allowing for multiple nested fits. E.g. imposing a common vertex for groups of particle tracks is of particular interest. We present a consistent and complete recipe to impose constraints on any set of either implicit or explicit parameters. The baseline solution to the alignment problem is equivalent to the one described in [1]. The latter was derived using purely algebraic methods to reduce the initial large system of linear equations arising from separate fits of tracks and alignment parameters. The method presented here benefits from wider range of applications including problems with implicit vertex fit, physics constraints on track parameters, use of external information to constrain the geometry, etc. The complete formalism is given in [2]. The method has been applied to the full simulation of the ATLAS silicon tracking system. The ultimate goal is to determine ~35,000 degrees of freedom. We present a limited scale exercise exploring various aspects of the solution

    Searches for Supersymmetry in ATLAS

    Get PDF
    Slides for an invited talk at the Epiphany Conference 2010

    The ATLAS SCT grounding and shielding concept and implementation

    Get PDF
    This paper presents a complete description of Virgo, the French-Italian gravitational wave detector. The detector, built at Cascina, near Pisa (Italy), is a very large Michelson interferometer, with 3 km-long arms. In this paper, following a presentation of the physics requirements, leading to the specifications for the construction of the detector, a detailed description of all its different elements is given. These include civil engineering infrastructures, a huge ultra-high vacuum (UHV) chamber (about 6000 cubic metres), all of the optical components, including high quality mirrors and their seismic isolating suspensions, all of the electronics required to control the interferometer and for signal detection. The expected performances of these different elements are given, leading to an overall sensitivity curve as a function of the incoming gravitational wave frequency. This description represents the detector as built and used in the first data-taking runs. Improvements in different parts have been and continue to be performed, leading to better sensitivities. These will be detailed in a forthcoming paper

    HGF Mediates the Anti-inflammatory Effects of PRP on Injured Tendons

    Get PDF
    Platelet-rich plasma (PRP) containing hepatocyte growth factor (HGF) and other growth factors are widely used in orthopaedic/sports medicine to repair injured tendons. While PRP treatment is reported to decrease pain in patients with tendon injury, the mechanism of this effect is not clear. Tendon pain is often associated with tendon inflammation, and HGF is known to protect tissues from inflammatory damages. Therefore, we hypothesized that HGF in PRP causes the anti-inflammatory effects. To test this hypothesis, we performed in vitro experiments on rabbit tendon cells and in vivo experiments on a mouse Achilles tendon injury model. We found that addition of PRP or HGF decreased gene expression of COX-1, COX-2, and mPGES-1, induced by the treatment of tendon cells in vitro with IL-1β. Further, the treatment of tendon cell cultures with HGF antibodies reduced the suppressive effects of PRP or HGF on IL-1β-induced COX-1, COX-2, and mPGES-1 gene expressions. Treatment with PRP or HGF almost completely blocked the cellular production of PGE2 and the expression of COX proteins. Finally, injection of PRP or HGF into wounded mouse Achilles tendons in vivo decreased PGE2 production in the tendinous tissues. Injection of platelet-poor plasma (PPP) however, did not reduce PGE2 levels in the wounded tendons, but the injection of HGF antibody inhibited the effects of PRP and HGF. Further, injection of PRP or HGF also decreased COX-1 and COX-2 proteins. These results indicate that PRP exerts anti-inflammatory effects on injured tendons through HGF. This study provides basic scientific evidence to support the use of PRP to treat injured tendons because PRP can reduce inflammation and thereby reduce the associated pain caused by high levels of PGE2. © 2013 Zhang et al

    Standalone vertex finding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ γ, H → Z Z∗ →4l and H →W W∗ →lνlν. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson

    Measurement of the top quark pair cross section with ATLAS in pp collisions at √s=7 TeV using final states with an electron or a muon and a hadronically decaying τ lepton

    Get PDF
    A measurement of the cross section of top quark pair production in proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 7 TeV is reported. The data sample used corresponds to an integrated luminosity of 2.05 fb -1. Events with an isolated electron or muon and a τ lepton decaying hadronically are used. In addition, a large missing transverse momentum and two or more energetic jets are required. At least one of the jets must be identified as originating from a b quark. The measured cross section, σtt-=186±13(stat.)±20(syst.)±7(lumi.) pb, is in good agreement with the Standard Model prediction
    corecore