27 research outputs found

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Animal models of atherosclerosis.

    No full text
    An ideal animal model of atherosclerosis resembles human anatomy and pathophysiology and has the potential to be used in medical and pharmaceutical research to obtain results that can be extrapolated to human medicine. Moreover, it must be easy to acquire, can be maintained at a reasonable cost, is easy to handle and shares the topography of the lesions with humans. In general, animal models of atherosclerosis are based on accelerated plaque formation due to a cholesterol-rich/Western-type diet, manipulation of genes involved in the cholesterol metabolism, and the introduction of additional risk factors for atherosclerosis. Mouse and rabbit models have been mostly used, followed by pigs and non-human primates. Each of these models has its advantages and limitations. The mouse has become the predominant species to study experimental atherosclerosis because of its rapid reproduction, ease of genetic manipulation and its ability to monitor atherogenesis in a reasonable time frame. Both Apolipoprotein E deficient (ApoE-/-) and LDL-receptor (LDLr) knockout mice have been frequently used, but also ApoE/LDLr double-knockout, ApoE3-Leiden and PCSK9-AAV mice are valuable tools in atherosclerosis research. However, a great challenge was the development of a model in which intra-plaque microvessels, haemorrhages, spontaneous atherosclerotic plaque ruptures, myocardial infarction and sudden death occur consistently. These features are present in ApoE-/-Fbn1C1039G+/- mice, which can be used as a validated model in pre-clinical studies to evaluate novel plaque-stabilizing drugs

    Unravelling cell wall formation in the woody dicot stem

    No full text

    Unravelling cell wall formation in the woody dicot stem

    No full text
    Populus is presented as a model system for the study of wood formation (xylogenesis). The formation of wood (secondary xylem) is an ordered developmental process involving cell division, cell expansion, secondary wall deposition, lignification and programmed cell death. Because wood is formed in a variable environment and subject to developmental control, xylem cells are produced that differ in size, shape, cell wall structure, texture and composition. Hormones mediate some of the variability observed and control the process of xylogenesis. High-resolution analysis of auxin distribution across cambial region tissues, combined with the analysis of transgenic plants with modified auxin distribution, suggests that auxin provides positional information for the exit of cells from the meristem and probably also for the duration of cell expansion. Poplar sequencing projects have provided access to genes involved in cell wall formation. Genes involved in the biosynthesis of the carbohydrate skeleton of the cell wall are briefly reviewed. Most progress has been made in characterizing pectin methyl esterases that modify pectins in the cambial region. Specific expression patterns have also been found for expansins, xyloglucan endotransglycosylases and cellulose synthases, pointing to their role in wood cell wall formation and modification. Finally, by studying transgenic plants modified in various steps of the monolignol biosynthetic pathway and by localizing the expression of various enzymes, new insight into the lignin biosynthesis in planta has been gained.Journal ArticleResearch Support, Non-U.S. Gov'tReviewinfo:eu-repo/semantics/publishe

    Maligne Hodentumoren

    No full text

    Fluvial geomorphology

    No full text
    corecore