166 research outputs found

    Cross-correlation Weak Lensing of SDSS Galaxy Clusters I: Measurements

    Get PDF
    This is the first in a series of papers on the weak lensing effect caused by clusters of galaxies in Sloan Digital Sky Survey. The photometrically selected cluster sample, known as MaxBCG, includes ~130,000 objects between redshift 0.1 and 0.3, ranging in size from small groups to massive clusters. We split the clusters into bins of richness and luminosity and stack the surface density contrast to produce mean radial profiles. The mean profiles are detected over a range of scales, from the inner halo (25 kpc/h) well into the surrounding large scale structure (30 Mpc/h), with a significance of 15 to 20 in each bin. The signal over this large range of scales is best interpreted in terms of the cluster-mass cross-correlation function. We pay careful attention to sources of systematic error, correcting for them where possible. The resulting signals are calibrated to the ~10% level, with the dominant remaining uncertainty being the redshift distribution of the background sources. We find that the profiles scale strongly with richness and luminosity. We find the signal within a given richness bin depends upon luminosity, suggesting that luminosity is more closely correlated with mass than galaxy counts. We split the samples by redshift but detect no significant evolution. The profiles are not well described by power laws. In a subsequent series of papers we invert the profiles to three-dimensional mass profiles, show that they are well fit by a halo model description, measure mass-to-light ratios and provide a cosmological interpretation.Comment: Paper I in a series; v2.0 includes ApJ referee's suggestion

    Comparison of an approximately isothermal gravitational potentials of elliptical galaxies based on X-ray and optical data

    Full text link
    We analyze six X-ray bright elliptical galaxies, observed with Chandra and XMM-Newton, and approximate their gravitational potentials by isothermal spheres phi(r)=v_c^2 ln(r) over a range of radii from ~0.5 to ~25 kpc. We then compare the circular speed v_c derived from X-ray data with the estimators available from optical data. In particular we discuss two simple and robust procedures for evaluating the circular speed of the galaxy using the observed optical surface brightness and the line-of-sight velocity dispersion profiles. The best fitting relation between the circular speeds derived from optical observations of stars and X-ray observations of hot gas is v_{c,opt}~ \eta * v_{c,X}, where \eta=1.10-1.15 (depending on the method), suggesting, albeit with large statistical and systematic uncertainties, that non-thermal pressure on average contributes ~20-30% of the gas thermal pressure.Comment: 24 pages, 15 figures; Accepted for publication in MNRA

    Cosmological Constraints from the SDSS maxBCG Cluster Catalog

    Get PDF
    We use the abundance and weak lensing mass measurements of the SDSS maxBCG cluster catalog to simultaneously constrain cosmology and the richness--mass relation of the clusters. Assuming a flat \LambdaCDM cosmology, we find \sigma_8(\Omega_m/0.25)^{0.41} = 0.832\pm 0.033 after marginalization over all systematics. In common with previous studies, our error budget is dominated by systematic uncertainties, the primary two being the absolute mass scale of the weak lensing masses of the maxBCG clusters, and uncertainty in the scatter of the richness--mass relation. Our constraints are fully consistent with the WMAP five-year data, and in a joint analysis we find \sigma_8=0.807\pm 0.020 and \Omega_m=0.265\pm 0.016, an improvement of nearly a factor of two relative to WMAP5 alone. Our results are also in excellent agreement with and comparable in precision to the latest cosmological constraints from X-ray cluster abundances. The remarkable consistency among these results demonstrates that cluster abundance constraints are not only tight but also robust, and highlight the power of optically-selected cluster samples to produce precision constraints on cosmological parameters.Comment: comments welcom

    Effects of acute fatigue on the volitional and magnetically-evoked electromechanical delay of the knee flexors in males and females

    Get PDF
    Neuromuscular performance capabilities, including those measured by evoked responses, may be adversely affected by fatigue; however, the capability of the neuromuscular system to initiate muscle force rapidly under these circumstances is yet to be established. Sex-differences in the acute responses of neuromuscular performance to exercise stress may be linked to evidence that females are much more vulnerable to ACL injury than males. Optimal functioning of the knee flexors is paramount to the dynamic stabilisation of the knee joint, therefore the aim of this investigation was to examine the effects of acute maximal intensity fatiguing exercise on the voluntary and magnetically-evoked electromechanical delay in the knee flexors of males and females. Knee flexor volitional and magnetically-evoked neuromuscular performance was assessed in seven male and nine females prior to and immediately after: (i) an intervention condition comprising a fatigue trial of 30-seconds maximal static exercise of the knee flexors, (ii) a control condition consisting of no exercise. The results showed that the fatigue intervention was associated with a substantive reduction in volitional peak force (PFV) that was greater in males compared to females (15.0%, 10.2%, respectively, p < 0.01) and impairment to volitional electromechanical delay (EMDV) in females exclusively (19.3%, p < 0.05). Similar improvements in magnetically-evoked electromechanical delay in males and females following fatigue (21%, p < 0.001), however, may suggest a vital facilitatory mechanism to overcome the effects of impaired voluntary capabilities, and a faster neuromuscular response that can be deployed during critical times to protect the joint system

    GREAT3 results I: systematic errors in shear estimation and the impact of real galaxy morphology

    Get PDF
    We present first results from the third GRavitational lEnsing Accuracy Testing (GREAT3) challenge, the third in a sequence of challenges for testing methods of inferring weak gravitational lensing shear distortions from simulated galaxy images. GREAT3 was divided into experiments to test three specific questions, and included simulated space- and ground-based data with constant or cosmologically-varying shear fields. The simplest (control) experiment included parametric galaxies with a realistic distribution of signal-to-noise, size, and ellipticity, and a complex point spread function (PSF). The other experiments tested the additional impact of realistic galaxy morphology, multiple exposure imaging, and the uncertainty about a spatially-varying PSF; the last two questions will be explored in Paper II. The 24 participating teams competed to estimate lensing shears to within systematic error tolerances for upcoming Stage-IV dark energy surveys, making 1525 submissions overall. GREAT3 saw considerable variety and innovation in the types of methods applied. Several teams now meet or exceed the targets in many of the tests conducted (to within the statistical errors). We conclude that the presence of realistic galaxy morphology in simulations changes shear calibration biases by 1\sim 1 per cent for a wide range of methods. Other effects such as truncation biases due to finite galaxy postage stamps, and the impact of galaxy type as measured by the S\'{e}rsic index, are quantified for the first time. Our results generalize previous studies regarding sensitivities to galaxy size and signal-to-noise, and to PSF properties such as seeing and defocus. Almost all methods' results support the simple model in which additive shear biases depend linearly on PSF ellipticity.Comment: 32 pages + 15 pages of technical appendices; 28 figures; submitted to MNRAS; latest version has minor updates in presentation of 4 figures, no changes in content or conclusion

    Cosmological parameter estimation using Very Small Array data out to l=1500

    Get PDF
    We estimate cosmological parameters using data obtained by the Very Small Array (VSA) in its extended configuration, in conjunction with a variety of other CMB data and external priors. Within the flat Λ\LambdaCDM model, we find that the inclusion of high resolution data from the VSA modifies the limits on the cosmological parameters as compared to those suggested by WMAP alone, while still remaining compatible with their estimates. We find that Ωbh2=0.02340.0014+0.0012\Omega_{\rm b}h^2=0.0234^{+0.0012}_{-0.0014}, Ωdmh2=0.1110.016+0.014\Omega_{\rm dm}h^2=0.111^{+0.014}_{-0.016}, h=0.730.05+0.09h=0.73^{+0.09}_{-0.05}, nS=0.970.03+0.06n_{\rm S}=0.97^{+0.06}_{-0.03}, 1010AS=233+710^{10}A_{\rm S}=23^{+7}_{-3} and τ=0.140.07+0.14\tau=0.14^{+0.14}_{-0.07} for WMAP and VSA when no external prior is included.On extending the model to include a running spectral index of density fluctuations, we find that the inclusion of VSA data leads to a negative running at a level of more than 95% confidence (nrun=0.069±0.032n_{\rm run}=-0.069\pm 0.032), something which is not significantly changed by the inclusion of a stringent prior on the Hubble constant. Inclusion of prior information from the 2dF galaxy redshift survey reduces the significance of the result by constraining the value of Ωm\Omega_{\rm m}. We discuss the veracity of this result in the context of various systematic effects and also a broken spectral index model. We also constrain the fraction of neutrinos and find that fν<0.087f_{\nu}< 0.087 at 95% confidence which corresponds to mν<0.32eVm_\nu<0.32{\rm eV} when all neutrino masses are the equal. Finally, we consider the global best fit within a general cosmological model with 12 parameters and find consistency with other analyses available in the literature. The evidence for nrun<0n_{\rm run}<0 is only marginal within this model

    Cosmological Constraints from the Clustering of the Sloan Digital Sky Survey DR7 Luminous Red Galaxies

    Get PDF
    We present the power spectrum of the reconstructed halo density field derived from a sample of Luminous Red Galaxies (LRGs) from the Sloan Digital Sky Survey Seventh Data Release (DR7). The halo power spectrum has a direct connection to the underlying dark matter power for k <= 0.2 h/Mpc, well into the quasi-linear regime. This enables us to use a factor of ~8 more modes in the cosmological analysis than an analysis with kmax = 0.1 h/Mpc, as was adopted in the SDSS team analysis of the DR4 LRG sample (Tegmark et al. 2006). The observed halo power spectrum for 0.02 < k < 0.2 h/Mpc is well-fit by our model: chi^2 = 39.6 for 40 degrees of freedom for the best fit LCDM model. We find \Omega_m h^2 * (n_s/0.96)^0.13 = 0.141^{+0.009}_{-0.012} for a power law primordial power spectrum with spectral index n_s and \Omega_b h^2 = 0.02265 fixed, consistent with CMB measurements. The halo power spectrum also constrains the ratio of the comoving sound horizon at the baryon-drag epoch to an effective distance to z=0.35: r_s/D_V(0.35) = 0.1097^{+0.0039}_{-0.0042}. Combining the halo power spectrum measurement with the WMAP 5 year results, for the flat LCDM model we find \Omega_m = 0.289 +/- 0.019 and H_0 = 69.4 +/- 1.6 km/s/Mpc. Allowing for massive neutrinos in LCDM, we find \sum m_{\nu} < 0.62 eV at the 95% confidence level. If we instead consider the effective number of relativistic species Neff as a free parameter, we find Neff = 4.8^{+1.8}_{-1.7}. Combining also with the Kowalski et al. (2008) supernova sample, we find \Omega_{tot} = 1.011 +/- 0.009 and w = -0.99 +/- 0.11 for an open cosmology with constant dark energy equation of state w.Comment: 26 pages, 19 figures, submitted to MNRAS. The power spectrum and a module to calculate the likelihoods is publicly available at http://lambda.gsfc.nasa.gov/toolbox/lrgdr/ . v2 fixes abstract formatting issu

    The clustering of galaxies at z~0.5 in the SDSS-III Data Release 9 BOSS-CMASS sample: a test for the LCDM cosmology

    Full text link
    We present results on the clustering of 282,068 galaxies in the Baryon Oscillation Spectroscopic Survey (BOSS) sample of massive galaxies with redshifts 0.4<z<0.7 which is part of the Sloan Digital Sky Survey III project. Our results cover a large range of scales from ~0.5 to ~90 Mpc/h. We compare these estimates with the expectations of the flat LCDM cosmological model with parameters compatible with WMAP7 data. We use the MultiDark cosmological simulation together with a simple halo abundance matching technique, to estimate galaxy correlation functions, power spectra, abundance of subhaloes and galaxy biases. We find that the LCDM model gives a reasonable description to the observed correlation functions at z~0.5, which is a remarkably good agreement considering that the model, once matched to the observed abundance of BOSS galaxies, does not have any free parameters. However, we find a deviation (>~10%) in the correlation functions for scales less than ~1 Mpc/h and ~10-40 Mpc/h. A more realistic abundance matching model and better statistics from upcoming observations are needed to clarify the situation. We also estimate that about 12% of the "galaxies" in the abundance-matched sample are satellites inhabiting central haloes with mass M>~1e14 M_sun/h. Using the MultiDark simulation we also study the real space halo bias b(r) of the matched catalogue finding that b=2.00+/-0.07 at large scales, consistent with the one obtained using the measured BOSS projected correlation function. Furthermore, the linear large-scale bias depends on the number density n of the abundance-matched sample as b=-0.048-(0.594+/-0.02)*log(n/(h/Mpc)^3). Extrapolating these results to BAO scales we measure a scale-dependent damping of the acoustic signal produced by non-linear evolution that leads to ~2-4% dips at ~3 sigma level for wavenumbers k>~0.1 h/Mpc in the linear large-scale bias.Comment: Replaced to match published version. Typos corrected; 25 pages, 17 figures, 9 tables. To appear in MNRAS. Correlation functions (projected and redshift-space) and correlation matrices of CMASS presented in Appendix B. Correlation and covariance data for the combined CMASS sample can be downloaded from http://www.sdss3.org/science/boss_publications.ph
    corecore