26 research outputs found

    Specialist palliative care improves the quality of life in advanced neurodegenerative disorders: Ne-PAL a pilot randomized controlled study

    Get PDF
    Background This study analysed the impact on palliative care outcomes of a new specialist palliative care service for patients severely affected by amyotrophic lateral sclerosis (ALS/MND), multiple sclerosis, Parkinson's disease and related disorders (multiple system atrophy progressive supranuclear palsy, MSA-PSP). Methods The design followed the Medical Research Council Framework for the evaluation of complex interventions. A phase II randomised controlled trial (RCT) was undertaken comparing an immediate referral to the service (FT, fast track) to a 16-week wait (standard track (ST), standard best practice) using a parallel arm design. The main outcome measures were Quality of Life (measured with Schedule for the Evaluation of Individual Quality of Life Direct Weight, SEIQoL-DW) and burden of the carers (Caregivers Burden Inventory, CBI), with secondary outcomes of symptoms, psychosocial and spiritual issues. Results 50 patients severely affected by neurodegenerative conditions and their informal family carers were randomised: 25 FT, 25 ST. At baseline (T0), there were no differences between groups. 4 patients died during the follow-up (2 FT, 2 ST) and 2 FT patients dropped out before the end of the study. After 16?weeks (T1), FT participants scored significant improvement in the SEIQoL-DW index, pain dyspnoea sleep disturbance and bowel symptoms. Conclusions This exploratory RCT provides evidence that no harm was experienced by SPCS for patients severely affected by neurodegenerative disorders. There was an improvement in quality of life and physical symptoms for neurological patients in palliative care. Caregiver burden was not affected by the service

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    Osteoimmunology of Oral and Maxillofacial Diseases : Translational Applications Based on Biological Mechanisms

    Get PDF
    The maxillofacial skeleton is highly dynamic and requires a constant equilibrium between the bone resorption and bone formation. The field of osteoimmunology explores the interactions between bone metabolism and the immune response, providing a context to study the complex cellular and molecular networks involved in oro-maxillofacial osteolytic diseases. In this review, we present a framework for understanding the potential mechanisms underlying the immuno-pathobiology in etiologically-diverse diseases that affect the oral and maxillofacial region and share bone destruction as their common clinical outcome. These otherwise different pathologies share similar inflammatory pathways mediated by central cellular players, such as macrophages, T and B cells, that promote the differentiation and activation of osteoclasts, ineffective or insufficient bone apposition by osteoblasts, and the continuous production of osteoclastogenic signals by immune and local stromal cells. We also present the potential translational applications of this knowledge based on the biological mechanisms involved in the inflammation-induced bone destruction. Such applications can be the development of immune-based therapies that promote bone healing/regeneration, the identification of host-derived inflammatory/collagenolytic biomarkers as diagnostics tools, the assessment of links between oral and systemic diseases; and the characterization of genetic polymorphisms in immune or bone-related genes that will help diagnosis of susceptible individuals.Peer reviewe

    Locus for severity implicates CNS resilience in progression of multiple sclerosis

    Get PDF
    Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) that results in significant neurodegeneration in the majority of those affected and is a common cause of chronic neurological disability in young adults(1,2). Here, to provide insight into the potential mechanisms involved in progression, we conducted a genome-wide association study of the age-related MS severity score in 12,584 cases and replicated our findings in a further 9,805 cases. We identified a significant association with rs10191329 in the DYSF-ZNF638 locus, the risk allele of which is associated with a shortening in the median time to requiring a walking aid of a median of 3.7 years in homozygous carriers and with increased brainstem and cortical pathology in brain tissue. We also identified suggestive association with rs149097173 in the DNM3-PIGC locus and significant heritability enrichment in CNS tissues. Mendelian randomization analyses suggested a potential protective role for higher educational attainment. In contrast to immune-driven susceptibility(3), these findings suggest a key role for CNS resilience and potentially neurocognitive reserve in determining outcome in MS

    Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility

    Get PDF

    DMTs and Covid-19 severity in MS: a pooled analysis from Italy and France

    Get PDF
    We evaluated the effect of DMTs on Covid-19 severity in patients with MS, with a pooled-analysis of two large cohorts from Italy and France. The association of baseline characteristics and DMTs with Covid-19 severity was assessed by multivariate ordinal-logistic models and pooled by a fixed-effect meta-analysis. 1066 patients with MS from Italy and 721 from France were included. In the multivariate model, anti-CD20 therapies were significantly associated (OR = 2.05, 95%CI = 1.39–3.02, p < 0.001) with Covid-19 severity, whereas interferon indicated a decreased risk (OR = 0.42, 95%CI = 0.18–0.99, p = 0.047). This pooled-analysis confirms an increased risk of severe Covid-19 in patients on anti-CD20 therapies and supports the protective role of interferon

    Anti-trypanosomatid drug discovery:an ongoing challenge and a continuing need

    Get PDF

    The INVENT COVID trial: a structured protocol for a randomized controlled trial investigating the efficacy and safety of intravenous imatinib mesylate (Impentri®) in subjects with acute respiratory distress syndrome induced by COVID-19

    No full text
    BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has led to a disruptive increase in the number of intensive care unit (ICU) admissions with acute respiratory distress syndrome (ARDS). ARDS is a severe, life-threatening medical condition characterized by widespread inflammation and vascular leak in the lungs. Although there is no proven therapy to reduce pulmonary vascular leak in ARDS, recent studies demonstrated that the tyrosine kinase inhibitor imatinib reinforces the endothelial barrier and prevents vascular leak in inflammatory conditions, while leaving the immune response intact. METHODS: This is a randomized, double-blind, parallel-group, placebo-controlled, multicenter clinical trial of intravenous (IV) imatinib mesylate in 90 mechanically ventilated subjects with COVID-19-induced ARDS. Subjects are 18 years or older, admitted to the ICU for mechanical ventilation, meeting the Berlin criteria for moderate-severe ARDS with a positive polymerase chain reaction test for SARS-CoV2. Participants will be randomized in a 1:1 ratio to either imatinib (as mesylate) 200 mg bis in die (b.i.d.) or placebo IV infusion for 7 days, or until ICU discharge or death. The primary study outcome is the change in Extravascular Lung Water Index (EVLWi) between day 1 and day 4. Secondary outcome parameters include changes in oxygenation and ventilation parameters, duration of invasive mechanical ventilation, number of ventilator-free days during the 28-day study period, length of ICU stay, and mortality during 28 days after randomization. Additional secondary parameters include safety, tolerability, and pharmacokinetics. DISCUSSION: The current study aims to investigate the efficacy and safety of IV imatinib in mechanically ventilated subjects with COVID-19-related ARDS. We hypothesize that imatinib decreases pulmonary edema, as measured by extravascular lung water using a PiCCO catheter. The reduction in pulmonary edema may reverse hypoxemic respiratory failure and hasten recovery. As pulmonary edema is an important contributor to ARDS, we further hypothesize that imatinib reduces disease severity, reflected by a reduction in 28-day mortality, duration of mechanical ventilation, and ICU length of stay. TRIAL STATUS: Protocol version and date: V3.1, 16 April 2021. Recruitment started on 09 March 2021. Estimated recruitment period of approximately 40 weeks. TRIAL REGISTRATION: ClinicalTrials.gov NCT04794088 . Registered on 11 March 2021

    The INVENT COVID trial: a structured protocol for a randomized controlled trial investigating the efficacy and safety of intravenous imatinib mesylate (Impentri®) in subjects with acute respiratory distress syndrome induced by COVID-19

    No full text
    BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has led to a disruptive increase in the number of intensive care unit (ICU) admissions with acute respiratory distress syndrome (ARDS). ARDS is a severe, life-threatening medical condition characterized by widespread inflammation and vascular leak in the lungs. Although there is no proven therapy to reduce pulmonary vascular leak in ARDS, recent studies demonstrated that the tyrosine kinase inhibitor imatinib reinforces the endothelial barrier and prevents vascular leak in inflammatory conditions, while leaving the immune response intact. METHODS: This is a randomized, double-blind, parallel-group, placebo-controlled, multicenter clinical trial of intravenous (IV) imatinib mesylate in 90 mechanically ventilated subjects with COVID-19-induced ARDS. Subjects are 18 years or older, admitted to the ICU for mechanical ventilation, meeting the Berlin criteria for moderate-severe ARDS with a positive polymerase chain reaction test for SARS-CoV2. Participants will be randomized in a 1:1 ratio to either imatinib (as mesylate) 200 mg bis in die (b.i.d.) or placebo IV infusion for 7 days, or until ICU discharge or death. The primary study outcome is the change in Extravascular Lung Water Index (EVLWi) between day 1 and day 4. Secondary outcome parameters include changes in oxygenation and ventilation parameters, duration of invasive mechanical ventilation, number of ventilator-free days during the 28-day study period, length of ICU stay, and mortality during 28 days after randomization. Additional secondary parameters include safety, tolerability, and pharmacokinetics. DISCUSSION: The current study aims to investigate the efficacy and safety of IV imatinib in mechanically ventilated subjects with COVID-19-related ARDS. We hypothesize that imatinib decreases pulmonary edema, as measured by extravascular lung water using a PiCCO catheter. The reduction in pulmonary edema may reverse hypoxemic respiratory failure and hasten recovery. As pulmonary edema is an important contributor to ARDS, we further hypothesize that imatinib reduces disease severity, reflected by a reduction in 28-day mortality, duration of mechanical ventilation, and ICU length of stay. TRIAL STATUS: Protocol version and date: V3.1, 16 April 2021. Recruitment started on 09 March 2021. Estimated recruitment period of approximately 40 weeks. TRIAL REGISTRATION: ClinicalTrials.gov NCT04794088 . Registered on 11 March 2021

    Efficacy and safety of intravenous imatinib in COVID-19 ARDS: a randomized, double-blind, placebo-controlled clinical trial

    Get PDF
    Abstract Purpose A hallmark of acute respiratory distress syndrome (ARDS) is hypoxaemic respiratory failure due to pulmonary vascular hyperpermeability. The tyrosine kinase inhibitor imatinib reversed pulmonary capillary leak in preclinical studies and improved clinical outcomes in hospitalized COVID-19 patients. We investigated the effect of intravenous (IV) imatinib on pulmonary edema in COVID-19 ARDS. Methods This was a multicenter, randomized, double-blind, placebo-controlled trial. Invasively ventilated patients with moderate-to-severe COVID-19 ARDS were randomized to 200 mg IV imatinib or placebo twice daily for a maximum of seven days. The primary outcome was the change in extravascular lung water index (∆EVLWi) between days 1 and 4. Secondary outcomes included safety, duration of invasive ventilation, ventilator-free days (VFD) and 28-day mortality. Posthoc analyses were performed in previously identified biological subphenotypes. Results 66 patients were randomized to imatinib (n = 33) or placebo (n = 33). There was no difference in ∆EVLWi between the groups (0.19 ml/kg, 95% CI − 3.16 to 2.77, p = 0.89). Imatinib treatment did not affect duration of invasive ventilation (p = 0.29), VFD (p = 0.29) or 28-day mortality (p = 0.79). IV imatinib was well-tolerated and appeared safe. In a subgroup of patients characterized by high IL-6, TNFR1 and SP-D levels (n = 20), imatinib significantly decreased EVLWi per treatment day (− 1.17 ml/kg, 95% CI − 1.87 to − 0.44). Conclusions IV imatinib did not reduce pulmonary edema or improve clinical outcomes in invasively ventilated COVID-19 patients. While this trial does not support the use of imatinib in the general COVID-19 ARDS population, imatinib reduced pulmonary edema in a subgroup of patients, underscoring the potential value of predictive enrichment in ARDS trials. Trial registration NCT04794088 , registered 11 March 2021. European Clinical Trials Database (EudraCT number: 2020-005447-23)
    corecore