3,436 research outputs found

    The Kaon BB-parameter with Wilson Fermions

    Full text link
    We calculate the kaon BB-parameter in quenched lattice QCD at β=6.0\beta=6.0 using Wilson fermions at κ=0.154\kappa=0.154 and 0.1550.155. We use two kinds of non-local (``smeared'') sources for quark propagators to calculate the matrix elements between states of definite momentum. The use of smeared sources yields results with much smaller errors than obtained in previous calculations with Wilson fermions. By combining results for p=(0,0,0)\vec p =(0,0,0) and p=(0,0,1)\vec p =(0,0,1), we show that one can carry out the non-perturbative subtraction necessary to remove the dominant lattice artifacts induced by the chiral symmetry breaking term in the Wilson action. Our final results are in good agreement with those obtained using staggered fermions. We also present results for BB-parameters of the ΔI=3/2\Delta I = 3/2 part of the electromagnetic penguin operators, and preliminary results for \bk\ in the presence of two flavors of dynamical quarks.Comment: 39 pages, including 9 PS figures (LA UR-91-3522

    Phenomenology with Wilson fermions using smeared sources

    Full text link
    We investigate the use of two types of non-local (``smeared'') sources for quark propagators in quenched lattice QCD at β=6.0\beta=6.0 using Wilson fermions at κ=0.154\kappa=0.154 and 0.1550.155. We present results for the hadron mass spectrum, meson decay constants, quark masses, the chiral condensate and the quark distribution amplitude of the pion. The use of smeared sources leads to a considerable improvement over previous results. We find a disturbing discrepancy between the baryon spectra obtained using Wuppertal and wall sources. We find good signals in the ratio of correlators used to calculate the quark mass and the chiral condensate and show that the extrapolation to the chiral limit is smooth.Comment: (revised), 57 pages (29 pages of PostScript in landscape mode, 765924 bytes

    Chemical evolution of the intra-cluster medium

    Full text link
    The high metallicity of the intra-cluster medium (ICM) is generally interpreted on the base of the galactic wind scenario for elliptical galaxies. In this framework, we develop a toy-model to follow the chemical evolution of the ICM, formulated in analogy to chemical models for individual galaxies. The model computes the galaxy formation history (GFH) of cluster galaxies, connecting the final luminosity function (LF) to the corresponding metal enrichment history of the ICM. The observed LF can be reproduced with a smooth, Madau-plot like GFH peaking at z~ 1-2, plus a "burst" of formation of dwarf galaxies at high redshift. The model is used to test the response of the predicted metal content and abundance evolution of the ICM to varying input galactic models. The chemical enrichment is computed from "galactic yields" based on models of elliptical galaxies with a variable initial mass function (IMF), favouring the formation of massive stars at high redshift and/or in more massive galaxies. For a given final galactic luminosity, these model ellipticals eject into the ICM a larger quantity of gas and of metals than do standard models based on the Salpeter IMF. However, a scenario in which the IMF varies with redshift as a consequence of the effect of the the cosmic background temperature on the Jeans mass scale, appears to be too mild to account for the observed metal production in clusters. The high iron-mass-to-luminosity-ratio of the ICM can be reproduced only by assuming a more dramatic variation of the typical stellar mass, in line with other recent findings. The mass in the wind-ejected gas is predicted to exceed the mass in galaxies by a factor of 1.5-2 and to constitute roughly half of the intra-cluster gas.Comment: 25 pages, 17 figures, accepted for publication in A&

    Third-generation continuous-flow left ventricular assist devices: a comparative outcome analysis by device type.

    Get PDF
    AIMS Continuous-flow left ventricular assist devices (CF-LVADs) have become a standard of care in end-stage heart failure. Limited data exist comparing outcomes of HeartMate3 (HM3) and HeartWare HVAD (HW). We aimed to compare midterm outcomes of these devices. METHODS AND RESULTS Investigator-initiated retrospective-observational comparative analysis of all patients who underwent primary LVAD implantation of either HM3 or HW at our centre between January 2010 and December 2020. Data were derived from a prospective registry. Primary endpoints were all-cause mortality and heart transplantation. Secondary endpoints included device-related major adverse cardiac and cerebrovascular events, which included major bleeding, major neurological dysfunction (defined as persisting neurological impairment for ≥24 h), device-related major infection (excluding driveline infections), major device malfunctions leading to re-intervention or partial device exchange (pump failure, outflow-graft twist or failure, controller failure, battery failure, patient cable failure, but excluding pump thrombosis), and pump thrombosis. Further secondary endpoints included right heart failure, gastrointestinal bleeding, driveline infections, and surgical re-interventions. The secondary outcomes were analysed not only for the first event but also for recurrent events. The analysis included competing risks analysis and recurrent event regression analysis, with adjustment for confounders age, gender, body mass index (BMI), and Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) level. Out of 106 primary CF-LVAD implantations, 36 (34%) received HM3 and 70 (66%) received HW. Median follow-up was 1.48 years [interquartile range 0.67, 2.41]. HM3 was more often implanted in men (91.7% vs. 72.9%, P = 0.024); patients were older (median 61 years [54, 66.5] vs. 52.5 years [43, 60], P < 0.001), had a higher BMI (median 26.7 kg/m2 [23.4, 29.0] vs. 24.3 kg/m2 [20.7, 27.4], P = 0.013), had more comorbidities, and were more likely targeted for destination therapy (36.1% vs. 14.3%, P = 0.010). Death occurred in 33.3% of HM3 patients, compared with 22.9% of HW patients, P = 0.247 (probability of survival at 4 years, 54.7% vs. 74.1%, P = 0.296). After adjustment for confounders, we observed a significant six-fold risk increase in device malfunctions for HW [hazard ratio (HR) 6.49, 95% confidence interval (CI) [1.89, 22.32], P = 0.003], but no significant differences in pump thrombosis (P = 0.173) or overall survival (P = 0.801). CONCLUSIONS Comparing midterm outcomes between HM3 and HW for LVAD support from a prospective registry, HW patients had a significantly higher risk of device malfunctions. No significant differences were evident between devices in overall survival and in respect to most outcomes

    Higgs compositeness in Sp(2N) gauge theories – Determining the low-energy constants with lattice calculations

    Get PDF
    As a first step towards a quantitative understanding of the SU(4)/Sp(4) compositeHiggs model through lattice calculations, we discuss the low energy eective fieldtheory resulting from the SU(4) ! Sp(4) global symmetry breaking pattern. We thenconsider an Sp(4) gauge theory with two Dirac fermion flavours in the fundamental representationon a lattice, which provides a concrete example of the microscopic realisationof the SU(4)/Sp(4) composite Higgs model. For this system, we outline a programmeof numerical simulations aiming at the determination of the low-energy constants of theeective field theory and we test the method on the quenched theory. We also report earlyresults from dynamical simulations, focussing on the phase structure of the lattice theoryand a calculation of the lowest-lying meson spectrum at coarse lattice spacing

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    Observation of two new Ξb\Xi_b^- baryon resonances

    Get PDF
    Two structures are observed close to the kinematic threshold in the Ξb0π\Xi_b^0 \pi^- mass spectrum in a sample of proton-proton collision data, corresponding to an integrated luminosity of 3.0 fb1^{-1} recorded by the LHCb experiment. In the quark model, two baryonic resonances with quark content bdsbds are expected in this mass region: the spin-parity JP=12+J^P = \frac{1}{2}^+ and JP=32+J^P=\frac{3}{2}^+ states, denoted Ξb\Xi_b^{\prime -} and Ξb\Xi_b^{*-}. Interpreting the structures as these resonances, we measure the mass differences and the width of the heavier state to be m(Ξb)m(Ξb0)m(π)=3.653±0.018±0.006m(\Xi_b^{\prime -}) - m(\Xi_b^0) - m(\pi^{-}) = 3.653 \pm 0.018 \pm 0.006 MeV/c2/c^2, m(Ξb)m(Ξb0)m(π)=23.96±0.12±0.06m(\Xi_b^{*-}) - m(\Xi_b^0) - m(\pi^{-}) = 23.96 \pm 0.12 \pm 0.06 MeV/c2/c^2, Γ(Ξb)=1.65±0.31±0.10\Gamma(\Xi_b^{*-}) = 1.65 \pm 0.31 \pm 0.10 MeV, where the first and second uncertainties are statistical and systematic, respectively. The width of the lighter state is consistent with zero, and we place an upper limit of Γ(Ξb)<0.08\Gamma(\Xi_b^{\prime -}) < 0.08 MeV at 95% confidence level. Relative production rates of these states are also reported.Comment: 17 pages, 2 figure

    Differential branching fraction and angular analysis of the decay B0→K∗0μ+μ−

    Get PDF
    The angular distribution and differential branching fraction of the decay B 0→ K ∗0 μ + μ − are studied using a data sample, collected by the LHCb experiment in pp collisions at s√=7 TeV, corresponding to an integrated luminosity of 1.0 fb−1. Several angular observables are measured in bins of the dimuon invariant mass squared, q 2. A first measurement of the zero-crossing point of the forward-backward asymmetry of the dimuon system is also presented. The zero-crossing point is measured to be q20=4.9±0.9GeV2/c4 , where the uncertainty is the sum of statistical and systematic uncertainties. The results are consistent with the Standard Model predictions
    corecore