107 research outputs found

    Characterization of Alkali Metal Dispensers and Non-Evaporable Getter Pumps in Ultra-High Vacuum Systems for Cold Atomic Sensors

    Full text link
    A glass ultrahigh vacuum chamber with rubidium alkali metal dispensers and non-evaporable getter pumps has been developed and used to create a cold atomic sample in a chamber that operates with only passive vacuum pumps. The ion-mass spectrum of evaporated gases from the alkali metal dispenser has been recorded as a function of dispenser current. The efficacy of the non-evaporable getter pumps in promoting and maintaining vacuum has been characterized by observation of the Rb vapor optical absorption on the D2 transition at 780 nm and vacuum chamber pressure rate of rise tests. We have demonstrated a sample of laser-cooled Rb atoms in this chamber when isolated and operating without active vacuum pumps

    Software Citation Implementation Challenges

    Get PDF
    The main output of the FORCE11 Software Citation working group (https://www.force11.org/group/software-citation-working-group) was a paper on software citation principles (https://doi.org/10.7717/peerj-cs.86) published in September 2016. This paper laid out a set of six high-level principles for software citation (importance, credit and attribution, unique identification, persistence, accessibility, and specificity) and discussed how they could be used to implement software citation in the scholarly community. In a series of talks and other activities, we have promoted software citation using these increasingly accepted principles. At the time the initial paper was published, we also provided guidance and examples on how to make software citable, though we now realize there are unresolved problems with that guidance. The purpose of this document is to provide an explanation of current issues impacting scholarly attribution of research software, organize updated implementation guidance, and identify where best practices and solutions are still needed

    Reconstructing Roma History from Genome-Wide Data

    Get PDF
    The Roma people, living throughout Europe and West Asia, are a diverse population linked by the Romani language and culture. Previous linguistic and genetic studies have suggested that the Roma migrated into Europe from South Asia about 1,000–1,500 years ago. Genetic inferences about Roma history have mostly focused on the Y chromosome and mitochondrial DNA. To explore what additional information can be learned from genome-wide data, we analyzed data from six Roma groups that we genotyped at hundreds of thousands of single nucleotide polymorphisms (SNPs). We estimate that the Roma harbor about 80% West Eurasian ancestry–derived from a combination of European and South Asian sources–and that the date of admixture of South Asian and European ancestry was about 850 years before present. We provide evidence for Eastern Europe being a major source of European ancestry, and North-west India being a major source of the South Asian ancestry in the Roma. By computing allele sharing as a measure of linkage disequilibrium, we estimate that the migration of Roma out of the Indian subcontinent was accompanied by a severe founder event, which appears to have been followed by a major demographic expansion after the arrival in Europe.Országos Tudományos Kutatási Alapprogramok (OTKA K 103983)Országos Tudományos Kutatási Alapprogramok (OTKA 73430)National Science Foundation (U.S.) (HOMINID grant 1032255)National Institutes of Health (U.S.) (grant GM100233

    A Selectable and Excisable Marker System for the Rapid Creation of Recombinant Poxviruses

    Get PDF
    Genetic manipulation of poxvirus genomes through attenuation, or insertion of therapeutic genes has led to a number of vector candidates for the treatment of a variety of human diseases. The development of recombinant poxviruses often involves the genomic insertion of a selectable marker for purification and selection purposes. The use of marker genes however inevitably results in a vector that contains unwanted genetic information of no therapeutic value.Here we describe an improved strategy that allows for the creation of marker-free recombinant poxviruses of any species. The Selectable and Excisable Marker (SEM) system incorporates a unique fusion marker gene for the efficient selection of poxvirus recombinants and the Cre/loxP system to facilitate the subsequent removal of the marker. We have defined and characterized this new methodological tool by insertion of a foreign gene into vaccinia virus, with the subsequent removal of the selectable marker. We then analyzed the importance of loxP orientation during Cre recombination, and show that the SEM system can be used to introduce site-specific deletions or inversions into the viral genome. Finally, we demonstrate that the SEM strategy is amenable to other poxviruses, as demonstrated here with the creation of an ectromelia virus recombinant lacking the EVM002 gene.The system described here thus provides a faster, simpler and more efficient means to create clinic-ready recombinant poxviruses for therapeutic gene therapy applications

    How absolute is zero? An evaluation of historical and current definitions of malaria elimination

    Get PDF
    Decisions to eliminate malaria from all or part of a country involve a complex set of factors, and this complexity is compounded by ambiguity surrounding some of the key terminology, most notably "control" and "elimination." It is impossible to forecast resource and operational requirements accurately if endpoints have not been defined clearly, yet even during the Global Malaria Eradication Program, debate raged over the precise definition of "eradication." Analogous deliberations regarding the meaning of "elimination" and "control" are basically nonexistent today despite these terms' core importance to programme planning. To advance the contemporary debate about these issues, this paper presents a historical review of commonly used terms, including control, elimination, and eradication, to help contextualize current understanding of these concepts. The review has been supported by analysis of the underlying mathematical concepts on which these definitions are based through simple branching process models that describe the proliferation of malaria cases following importation. Through this analysis, the importance of pragmatic definitions that are useful for providing malaria control and elimination programmes with a practical set of strategic milestones is emphasized, and it is argued that current conceptions of elimination in particular fail to achieve these requirements. To provide all countries with precise targets, new conceptual definitions are suggested to more precisely describe the old goals of "control" - here more exactly named "controlled low-endemic malaria" - and "elimination." Additionally, it is argued that a third state, called "controlled non-endemic malaria," is required to describe the epidemiological condition in which endemic transmission has been interrupted, but malaria resulting from onwards transmission from imported infections continues to occur at a sufficiently high level that elimination has not been achieved. Finally, guidelines are discussed for deriving the separate operational definitions and metrics that will be required to make these concepts relevant, measurable, and achievable for a particular environment

    Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages

    Get PDF
    Generalist and specialist species differ in the breadth of their ecological niches. Little is known about the niche width of obligate human pathogens. Here we analyzed a global collection of Mycobacterium tuberculosis lineage 4 clinical isolates, the most geographically widespread cause of human tuberculosis. We show that lineage 4 comprises globally distributed and geographically restricted sublineages, suggesting a distinction between generalists and specialists. Population genomic analyses showed that, whereas the majority of human T cell epitopes were conserved in all sublineages, the proportion of variable epitopes was higher in generalists. Our data further support a European origin for the most common generalist sublineage. Hence, the global success of lineage 4 reflects distinct strategies adopted by different sublineages and the influence of human migration.We thank S. Lecher, S. Li and J. Zallet for technical support. Calculations were performed at the sciCORE scientific computing core facility at the University of Basel. This work was supported by the Swiss National Science Foundation (grants 310030_166687 (S.G.) and 320030_153442 (M.E.) and Swiss HIV Cohort Study grant 740 to L.F.), the European Research Council (309540-EVODRTB to S.G.), TB-PAN-NET (FP7-223681 to S.N.), PathoNgenTrace projects (FP7-278864-2 to S.N.), SystemsX.ch (S.G.), the German Center for Infection Research (DZIF; S.N.), the Novartis Foundation (S.G.), the Natural Science Foundation of China (91631301 to Q.G.), and the National Institute of Allergy and Infectious Diseases (5U01-AI069924-05) of the US National Institutes of Health (M.E.)

    A communal catalogue reveals Earth's multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe

    A communal catalogue reveals Earth’s multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity
    corecore