203 research outputs found

    Azimuthal anisotropy of charged jet production in root s(NN)=2.76 TeV Pb-Pb collisions

    Get PDF
    We present measurements of the azimuthal dependence of charged jet production in central and semi-central root s(NN) = 2.76 TeV Pb-Pb collisions with respect to the second harmonic event plane, quantified as nu(ch)(2) (jet). Jet finding is performed employing the anti-k(T) algorithm with a resolution parameter R = 0.2 using charged tracks from the ALICE tracking system. The contribution of the azimuthal anisotropy of the underlying event is taken into account event-by-event. The remaining (statistical) region-to-region fluctuations are removed on an ensemble basis by unfolding the jet spectra for different event plane orientations independently. Significant non-zero nu(ch)(2) (jet) is observed in semi-central collisions (30-50% centrality) for 20 <p(T)(ch) (jet) <90 GeV/c. The azimuthal dependence of the charged jet production is similar to the dependence observed for jets comprising both charged and neutral fragments, and compatible with measurements of the nu(2) of single charged particles at high p(T). Good agreement between the data and predictions from JEWEL, an event generator simulating parton shower evolution in the presence of a dense QCD medium, is found in semi-central collisions. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe

    Forward-central two-particle correlations in p-Pb collisions at root s(NN)=5.02 TeV

    Get PDF
    Two-particle angular correlations between trigger particles in the forward pseudorapidity range (2.5 2GeV/c. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B. V.Peer reviewe

    Event-shape engineering for inclusive spectra and elliptic flow in Pb-Pb collisions at root(NN)-N-S=2.76 TeV

    Get PDF
    Peer reviewe

    Pseudorapidity and transverse-momentum distributions of charged particles in proton-proton collisions at root s=13 TeV

    Get PDF
    The pseudorapidity (eta) and transverse-momentum (p(T)) distributions of charged particles produced in proton-proton collisions are measured at the centre-of-mass energy root s = 13 TeV. The pseudorapidity distribution in vertical bar eta vertical bar <1.8 is reported for inelastic events and for events with at least one charged particle in vertical bar eta vertical bar <1. The pseudorapidity density of charged particles produced in the pseudorapidity region vertical bar eta vertical bar <0.5 is 5.31 +/- 0.18 and 6.46 +/- 0.19 for the two event classes, respectively. The transverse-momentum distribution of charged particles is measured in the range 0.15 <p(T) <20 GeV/c and vertical bar eta vertical bar <0.8 for events with at least one charged particle in vertical bar eta vertical bar <1. The evolution of the transverse momentum spectra of charged particles is also investigated as a function of event multiplicity. The results are compared with calculations from PYTHIA and EPOS Monte Carlo generators. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Elliptic flow of muons from heavy-flavour hadron decays at forward rapidity in Pb-Pb collisions at root s(NN)=2.76TeV

    Get PDF
    The elliptic flow, v(2), of muons from heavy-flavour hadron decays at forward rapidity (2.5 <y <4) is measured in Pb-Pb collisions at root s(NN)= 2.76TeVwith the ALICE detector at the LHC. The scalar product, two- and four-particle Q cumulants and Lee-Yang zeros methods are used. The dependence of the v(2) of muons from heavy-flavour hadron decays on the collision centrality, in the range 0-40%, and on transverse momentum, p(T), is studied in the interval 3 <p(T)<10 GeV/c. A positive v(2) is observed with the scalar product and two-particle Q cumulants in semi-central collisions (10-20% and 20-40% centrality classes) for the p(T) interval from 3 to about 5GeV/c with a significance larger than 3 sigma, based on the combination of statistical and systematic uncertainties. The v(2) magnitude tends to decrease towards more central collisions and with increasing pT. It becomes compatible with zero in the interval 6 <p(T)<10 GeV/c. The results are compared to models describing the interaction of heavy quarks and open heavy-flavour hadrons with the high-density medium formed in high-energy heavy-ion collisions. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V.Peer reviewe

    Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb-Pb collisions at root s(NN)=2.76TeV

    Get PDF
    Peer reviewe

    Azimuthal differences of quenched jets

    No full text
    The study of high-energy partons in heavy ion collisions and proton collisions can provide us with an insight into the strong interaction. These products of hard collisions fragment and hadronize in a parton shower, so-called jets. In heavy ion collision the parton shower is modified in a process called quenching, wherein the parton and its products are interacting with a Quark Gluon Plasma (QGP). Intuitively one would expect the quenching effects to scale with the path length in the medium. A possible observable of the path length dependence uses the naturally occurring azimuthal differences in non-central heavy ion collisions. The elliptic flow observed in these events is linked to the second order event plane. Whether jets are in the direction of this event plane or perpendicular to it might influence the amount of quenching. In this work the difference between jets was studied depending on their angle to the event plane for three different equally large bins. This was done with the study of di-hadron correlation. The combitorinal background is subtracted with a model that connects the background in three plane-bins. Special attention was paid to the roll of the correlations between event planes. This model was tested in a Toy Monte Carlo model. Then the same background model was used in an analysis of the 2011 ALICE data of Lead-Lead collisions. Here several signs are present that the plane dependent trigger background fit (PDF) model does not perform as well as expected on basis of the Toy Monte Carlo Model, especially at lower transverse momenta of the associated particle (pT,a). Several cross checks have been performed to see whether this difference could be explained within the confines of the PDF model. But results for the near-side jet peak are not consistent with the more reliable method of large ∆η (LDE) subtraction, except for pT,a > 3 GeV/c on the near-side and pT,a > 4 GeV/c on the away side. Since an analysis of the away-side is not possible with the LDE model, and the PDF model is not suitable for the high momentum range where statistics is low, a model based on a Fourier analysis of the near-side range is introduced. This reproduces different results as well in the low momentum region. For all these models the Iplane parameters are introduced, a fraction of the associated particle yield from a angle-restricted trigger through a associated particle yield from an aselect trigger. A near-identical analysis is performed in a AMPT Monte Carlo model, where the same inconsistencies are present for the lower pT,a. For both the AMPT Monte Carlo and the ALICE data we can conclude that the LDE results are mostly in between the Fourier and the PDF results. At high pT,a no difference could be found within the current experimental and theoretical constraints. The expected effect of the path length dependence in the AMPT model is not distinguishable within current uncertainties. At lower pT,a the differences between background models are too large to draw conclusion

    燒津鰹漁業に於ける船仲組織(上) - 本邦漁業に特異なる勞働組織の一例 -

    Get PDF
    We report on the measurement of freeze-out radii for pairs of identical-charge pions measured in Pb-Pb collisions at √sNN = 2.76 TeV as a function of collision centrality and the average transverse momentum of the pair kT. Three-dimensional sizes of the system (femtoscopic radii), as well as direction-averaged onedimensional radii are extracted. The radii decrease with kT, following a power-law behavior. This is qualitatively consistent with expectations from a collectively expanding system, produced in hydrodynamic calculations. The radii also scale linearly with _dNch/dη_1/3. This behavior is compared to world data on femtoscopic radii in heavy-ion collisions. While the dependence is qualitatively similar to results at smaller √sNN, a decrease in the ratio Rout/Rside is seen, which is in qualitative agreement with a specific prediction from hydrodynamic models: a change from inside-out to outside-in freeze-out configuration. The results provide further evidence for the production of a collective, strongly coupled system in heavy-ion collisions at the CERN Large Hadron Collider

    生産增加と貨幣需要

    Get PDF
    We report on two-particle charge-dependent cor- relations in pp, p\u2013Pb, and Pb\u2013Pb collisions as a function of the pseudorapidity and azimuthal angle difference, \u3b7 and \u3c6 respectively. These correlations are studied using the balance function that probes the charge creation time and the develop- ment of collectivity in the produced system. The dependence of the balance function on the event multiplicity as well as on the trigger and associated particle transverse momentum ( pT ) in pp, p\u2013Pb, and Pb\u2013Pb collisions at 1asNN = 7, 5.02, and 2.76 TeV, respectively, are presented. In the low transverse momentum region, for 0.2 < pT < 2.0 GeV/c, the balance function becomes narrower in both \u3b7 and \u3c6 directions in all three systems for events with higher multiplicity. The experimental findings favor models that either incorporate some collective behavior (e.g. AMPT) or different mecha- nisms that lead to effects that resemble collective behavior (e.g. PYTHIA8 with color reconnection). For higher values of transverse momenta the balance function becomes even narrower but exhibits no multiplicity dependence, indicating that the observed narrowing with increasing multiplicity at low pT is a feature of bulk particle production
    corecore