188 research outputs found

    Feasibility of a registry for standardized assessment of long-term and late-onset health events in survivors of childhood and adolescent cancer

    Full text link
    Childhood and adolescent cancer survivors are at risk for chronic medical conditions. Longitudinal studies help to understand their development and course. We hypothesize that collecting follow-up data according to the modified CTCAE criteria and embedded in regular care, is feasible and results in a rich database. We recruited 50 Swiss survivors treated at our institution between 1992 and 2015, who completed their treatment and are still alive. Information on cancer diagnosis, treatment, and medical conditions from follow-up visits, graded according to the modified CTCAE criteria, were added in the database. We described the cohort, assessed the prevalence of medical conditions at the most recent visits and the time needed for data entry. Survivors had a median age of 10 years at diagnosis with 16 years of follow-up. 94% of survivors suffered from at least one medical condition. We registered 25 grade 3 or 4 conditions in 18 survivors. The time needed for data entry at enrollment was < 60 min in most survivors and much less for follow-up visits. Standardized assessment of medical conditions is feasible during regular clinical care. The database provides longitudinal real-time data to be used for clinical care, survivor education and research

    Supervised and unsupervised language modelling in Chest X-Ray radiological reports

    Get PDF
    Chest radiography (CXR) is the most commonly used imaging modality and deep neural network (DNN) algorithms have shown promise in effective triage of normal and abnormal radiograms. Typically, DNNs require large quantities of expertly labelled training exemplars, which in clinical contexts is a major bottleneck to effective modelling, as both considerable clinical skill and time is required to produce high-quality ground truths. In this work we evaluate thirteen supervised classifiers using two large free-text corpora and demonstrate that bi-directional long short-term memory (BiLSTM) networks with attention mechanism effectively identify Normal, Abnormal, and Unclear CXR reports in internal (n = 965 manually-labelled reports, f1-score = 0.94) and external (n = 465 manually-labelled reports, f1-score = 0.90) testing sets using a relatively small number of expert-labelled training observations (n = 3,856 annotated reports). Furthermore, we introduce a general unsupervised approach that accurately distinguishes Normal and Abnormal CXR reports in a large unlabelled corpus. We anticipate that the results presented in this work can be used to automatically extract standardized clinical information from free-text CXR radiological reports, facilitating the training of clinical decision support systems for CXR triage

    Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts.

    Get PDF
    The dipole configuration of the Earth's magnetic field allows for the trapping of highly energetic particles, which form the radiation belts. Although significant advances have been made in understanding the acceleration mechanisms in the radiation belts, the loss processes remain poorly understood. Unique observations on 17 January 2013 provide detailed information throughout the belts on the energy spectrum and pitch angle (angle between the velocity of a particle and the magnetic field) distribution of electrons up to ultra-relativistic energies. Here we show that although relativistic electrons are enhanced, ultra-relativistic electrons become depleted and distributions of particles show very clear telltale signatures of electromagnetic ion cyclotron wave-induced loss. Comparisons between observations and modelling of the evolution of the electron flux and pitch angle show that electromagnetic ion cyclotron waves provide the dominant loss mechanism at ultra-relativistic energies and produce a profound dropout of the ultra-relativistic radiation belt fluxes

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Measurement-induced entanglement and teleportation on a noisy quantum processor

    Full text link
    Measurement has a special role in quantum theory: by collapsing the wavefunction it can enable phenomena such as teleportation and thereby alter the "arrow of time" that constrains unitary evolution. When integrated in many-body dynamics, measurements can lead to emergent patterns of quantum information in space-time that go beyond established paradigms for characterizing phases, either in or out of equilibrium. On present-day NISQ processors, the experimental realization of this physics is challenging due to noise, hardware limitations, and the stochastic nature of quantum measurement. Here we address each of these experimental challenges and investigate measurement-induced quantum information phases on up to 70 superconducting qubits. By leveraging the interchangeability of space and time, we use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases -- from entanglement scaling to measurement-induced teleportation -- in a unified way. We obtain finite-size signatures of a phase transition with a decoding protocol that correlates the experimental measurement record with classical simulation data. The phases display sharply different sensitivity to noise, which we exploit to turn an inherent hardware limitation into a useful diagnostic. Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors

    Non-Abelian braiding of graph vertices in a superconducting processor

    Full text link
    Indistinguishability of particles is a fundamental principle of quantum mechanics. For all elementary and quasiparticles observed to date - including fermions, bosons, and Abelian anyons - this principle guarantees that the braiding of identical particles leaves the system unchanged. However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotations in a space of topologically degenerate wavefunctions. Hence, it can change the observables of the system without violating the principle of indistinguishability. Despite the well developed mathematical description of non-Abelian anyons and numerous theoretical proposals, the experimental observation of their exchange statistics has remained elusive for decades. Controllable many-body quantum states generated on quantum processors offer another path for exploring these fundamental phenomena. While efforts on conventional solid-state platforms typically involve Hamiltonian dynamics of quasi-particles, superconducting quantum processors allow for directly manipulating the many-body wavefunction via unitary gates. Building on predictions that stabilizer codes can host projective non-Abelian Ising anyons, we implement a generalized stabilizer code and unitary protocol to create and braid them. This allows us to experimentally verify the fusion rules of the anyons and braid them to realize their statistics. We then study the prospect of employing the anyons for quantum computation and utilize braiding to create an entangled state of anyons encoding three logical qubits. Our work provides new insights about non-Abelian braiding and - through the future inclusion of error correction to achieve topological protection - could open a path toward fault-tolerant quantum computing

    Dynamics of magnetization at infinite temperature in a Heisenberg spin chain

    Full text link
    Understanding universal aspects of quantum dynamics is an unresolved problem in statistical mechanics. In particular, the spin dynamics of the 1D Heisenberg model were conjectured to belong to the Kardar-Parisi-Zhang (KPZ) universality class based on the scaling of the infinite-temperature spin-spin correlation function. In a chain of 46 superconducting qubits, we study the probability distribution, P(M)P(\mathcal{M}), of the magnetization transferred across the chain's center. The first two moments of P(M)P(\mathcal{M}) show superdiffusive behavior, a hallmark of KPZ universality. However, the third and fourth moments rule out the KPZ conjecture and allow for evaluating other theories. Our results highlight the importance of studying higher moments in determining dynamic universality classes and provide key insights into universal behavior in quantum systems

    Post-Operative Functional Outcomes in Early Age Onset Rectal Cancer

    Get PDF
    Background: Impairment of bowel, urogenital and fertility-related function in patients treated for rectal cancer is common. While the rate of rectal cancer in the young (&lt;50 years) is rising, there is little data on functional outcomes in this group. Methods: The REACCT international collaborative database was reviewed and data on eligible patients analysed. Inclusion criteria comprised patients with a histologically confirmed rectal cancer, &lt;50 years of age at time of diagnosis and with documented follow-up including functional outcomes. Results: A total of 1428 (n=1428) patients met the eligibility criteria and were included in the final analysis. Metastatic disease was present at diagnosis in 13%. Of these, 40% received neoadjuvant therapy and 50% adjuvant chemotherapy. The incidence of post-operative major morbidity was 10%. A defunctioning stoma was placed for 621 patients (43%); 534 of these proceeded to elective restoration of bowel continuity. The median follow-up time was 42 months. Of this cohort, a total of 415 (29%) reported persistent impairment of functional outcomes, the most frequent of which was bowel dysfunction (16%), followed by bladder dysfunction (7%), sexual dysfunction (4.5%) and infertility (1%). Conclusion: A substantial proportion of patients with early-onset rectal cancer who undergo surgery report persistent impairment of functional status. Patients should be involved in the discussion regarding their treatment options and potential impact on quality of life. Functional outcomes should be routinely recorded as part of follow up alongside oncological parameters
    corecore