Indistinguishability of particles is a fundamental principle of quantum
mechanics. For all elementary and quasiparticles observed to date - including
fermions, bosons, and Abelian anyons - this principle guarantees that the
braiding of identical particles leaves the system unchanged. However, in two
spatial dimensions, an intriguing possibility exists: braiding of non-Abelian
anyons causes rotations in a space of topologically degenerate wavefunctions.
Hence, it can change the observables of the system without violating the
principle of indistinguishability. Despite the well developed mathematical
description of non-Abelian anyons and numerous theoretical proposals, the
experimental observation of their exchange statistics has remained elusive for
decades. Controllable many-body quantum states generated on quantum processors
offer another path for exploring these fundamental phenomena. While efforts on
conventional solid-state platforms typically involve Hamiltonian dynamics of
quasi-particles, superconducting quantum processors allow for directly
manipulating the many-body wavefunction via unitary gates. Building on
predictions that stabilizer codes can host projective non-Abelian Ising anyons,
we implement a generalized stabilizer code and unitary protocol to create and
braid them. This allows us to experimentally verify the fusion rules of the
anyons and braid them to realize their statistics. We then study the prospect
of employing the anyons for quantum computation and utilize braiding to create
an entangled state of anyons encoding three logical qubits. Our work provides
new insights about non-Abelian braiding and - through the future inclusion of
error correction to achieve topological protection - could open a path toward
fault-tolerant quantum computing