602 research outputs found

    Measurement of the Xi(-)(b) and Omega(-)(b) baryon lifetimes

    Get PDF
    Using a data sample of pp collisions corresponding to an integrated luminosity of 3 fb(-1), the Xi(-)(b) and Omega(-)(b) baryons are reconstructed in the Xi(-)(b) -&gt; J/psi Xi(-) and Omega(-)(b) -&gt; J/psi Omega(-) decay modes and their lifetimes measured to betau(Xi(-)(b)) = 1.55(-0.09)(+0.10) (stat) +/- 0.03 (syst) ps,tau(Omega(-)(b)) = 1.54(-0.21)(+0.26) (stat) +/- 0.05 (syst) ps.These are the most precise determinations to date. Both measurements are in good agreement with previous experimental results and with theoretical predictions. (C) 2014 The Authors. Published by Elsevier B.V.</p

    First observations of the rare decays B (+) -&gt; K (+)pi (+)pi (-)mu(+)mu (-) and B (+)-&gt; phi K (+)mu(+)mu (-)

    Get PDF
    First observations of the rare decays B (+) -> K (+)pi (+) pi (-) mu (+) mu (-) and B (+)-> phi K+ mu(+)mu(-) are presented using data corresponding to an integrated luminosity of 3.0 fb(-1), collected by the LHCb experiment at centre-of-mass energies of 7 and 8 TeV. The branching fractions of the decays are B(B (+) -> K (+)pi (+) pi (-) mu (+) mu (-) ) = (4.36 (-0.27) (+0.29) (stat) +/- 0.21 (syst) +/- (norm)) x 10(-7), B(B (+)-> phi K+ mu(+)mu(-)) = (0.82 (+0.19)(-0.17) (stat) (+0.10)(-0.04) (syst) +/- 0.27 (norm)) x 10(-7) where the uncertainties are statistical, systematic, and due to the uncertainty on the branching fractions of the normalisation modes. A measurement of the differential branching fraction in bins of the invariant mass squared of the dimuon system is also presented for the decay B (+) -> K (+)pi (+) pi (-) mu (+) mu (-

    Medium Chain Fatty Acids Are Selective Peroxisome Proliferator Activated Receptor (PPAR) γ Activators and Pan-PPAR Partial Agonists

    Get PDF
    Thiazolidinediones (TZDs) act through peroxisome proliferator activated receptor (PPAR) γ to increase insulin sensitivity in type 2 diabetes (T2DM), but deleterious effects of these ligands mean that selective modulators with improved clinical profiles are needed. We obtained a crystal structure of PPARγ ligand binding domain (LBD) and found that the ligand binding pocket (LBP) is occupied by bacterial medium chain fatty acids (MCFAs). We verified that MCFAs (C8–C10) bind the PPARγ LBD in vitro and showed that they are low-potency partial agonists that display assay-specific actions relative to TZDs; they act as very weak partial agonists in transfections with PPARγ LBD, stronger partial agonists with full length PPARγ and exhibit full blockade of PPARγ phosphorylation by cyclin-dependent kinase 5 (cdk5), linked to reversal of adipose tissue insulin resistance. MCFAs that bind PPARγ also antagonize TZD-dependent adipogenesis in vitro. X-ray structure B-factor analysis and molecular dynamics (MD) simulations suggest that MCFAs weakly stabilize C-terminal activation helix (H) 12 relative to TZDs and this effect is highly dependent on chain length. By contrast, MCFAs preferentially stabilize the H2-H3/β-sheet region and the helix (H) 11-H12 loop relative to TZDs and we propose that MCFA assay-specific actions are linked to their unique binding mode and suggest that it may be possible to identify selective PPARγ modulators with useful clinical profiles among natural products

    Understanding the interplay between social and spatial behaviour

    Get PDF
    According to personality psychology, personality traits determine many aspects of human behaviour. However, validating this insight in large groups has been challenging so far, due to the scarcity of multi-channel data. Here, we focus on the relationship between mobility and social behaviour by analysing trajectories and mobile phone interactions of ∼1000 individuals from two high-resolution longitudinal datasets. We identify a connection between the way in which individuals explore new resources and exploit known assets in the social and spatial spheres. We show that different individuals balance the exploration-exploitation trade-off in different ways and we explain part of the variability in the data by the big five personality traits. We point out that, in both realms, extraversion correlates with the attitude towards exploration and routine diversity, while neuroticism and openness account for the tendency to evolve routine over long time-scales. We find no evidence for the existence of classes of individuals across the spatio-social domains. Our results bridge the fields of human geography, sociology and personality psychology and can help improve current models of mobility and tie formation

    Misregulation of Scm3p/HJURP Causes Chromosome Instability in Saccharomyces cerevisiae and Human Cells

    Get PDF
    The kinetochore (centromeric DNA and associated proteins) is a key determinant for high fidelity chromosome transmission. Evolutionarily conserved Scm3p is an essential component of centromeric chromatin and is required for assembly and function of kinetochores in humans, fission yeast, and budding yeast. Overexpression of HJURP, the mammalian homolog of budding yeast Scm3p, has been observed in lung and breast cancers and is associated with poor prognosis; however, the physiological relevance of these observations is not well understood. We overexpressed SCM3 and HJURP in Saccharomyces cerevisiae and HJURP in human cells and defined domains within Scm3p that mediate its chromosome loss phenotype. Our results showed that the overexpression of SCM3 (GALSCM3) or HJURP (GALHJURP) caused chromosome loss in a wild-type yeast strain, and overexpression of HJURP led to mitotic defects in human cells. GALSCM3 resulted in reduced viability in kinetochore mutants, premature separation of sister chromatids, and reduction in Cse4p and histone H4 at centromeres. Overexpression of CSE4 or histone H4 suppressed chromosome loss and restored levels of Cse4p at centromeres in GALSCM3 strains. Using mutant alleles of scm3, we identified a domain in the N-terminus of Scm3p that mediates its interaction with CEN DNA and determined that the chromosome loss phenotype of GALSCM3 is due to centromeric association of Scm3p devoid of Cse4p/H4. Furthermore, we determined that similar to other systems the centromeric association of Scm3p is cell cycle regulated. Our results show that altered stoichiometry of Scm3p/HJURP, Cse4p, and histone H4 lead to defects in chromosome segregation. We conclude that stringent regulation of HJURP and SCM3 expression are critical for genome stability

    Estimating Geographical Variation in the Risk of Zoonotic Plasmodium knowlesi Infection in Countries Eliminating Malaria

    Get PDF
    Plasmodium knowlesi is a malaria parasite found in wild monkey populations and transmitted from this animal reservoir to humans via infected mosquitoes. It causes severe and fatal disease in humans, and is the most common cause of malaria in parts of Malaysia. The geographical distribution of this disease is largely unknown because it is often misdiagnosed as one of the human malarias. Human malaria parasites are primarily transmitted between humans via mosquitoes and are not frequently transmitted from other animals to humans. Many countries in Southeast Asia, where P. knowlesi infections have been reported, are making progress towards eliminating the human malarias. Understanding the geographical distribution of P. knowlesi is important for identifying areas where malaria transmission will continue after the human malarias have been eliminated. In locations that have high volumes of P. knowlesi infection data, we modelled patterns of variation in the data linked to environmental predictors, and used this to estimate P. knowlesi infection risk in locations where data is lacking. The resulting map represents an initial evidence-base for identifying areas of human disease risk that should be prioritized for surveillance, particularly in the context of malaria elimination in the region

    A communal catalogue reveals Earth's multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe

    A communal catalogue reveals Earth’s multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity
    corecore